Skip to main content
Log in

The Effect of Oxygen and Water Vapor on the Electric Properties of (Co40Fe40B20)x(LiNbO3)100 – x Nanogranular Composites

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The effect of oxygen and water vapor in a sputtering chamber during the deposition of thin-film (Co40Fe40B20)x(LiNbO3)100 – x nanocomposites on the electrical properties of the heterogenous system is investigated. It is found that the resistivity of (Co40Fe40B20)x(LiNbO3)100 – x nanocomposites increases significantly with the partial pressure of reactive gases (oxygen and water vapor). A noticeable shift of the percolation threshold towards higher values of the metal phase volume concentration, which is observed in the plane of the film and in the perpendicular direction during the synthesis of composites with the addition of reactive gases, is attributed to the increase in the volume concentration of the dielectric phase. It is found that the percolation threshold for the measurements in the geometry perpendicular to the plane of the film is characterized by a much lower concentration of the Co40Fe40B20 alloy atoms than that for the measurements in the plane of the film, which is associated with an elongated shape of granules in the film growth direction and the effects of Coulomb blockade suppression by a high transverse electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. V. V. Rylkov, A. V. Emelyanov, S. N. Nikolaev, K. E. Nikiruy, A. V. Sitnikov, E. A. Fadeev, V. A. Demin, and A. B. Granovsky, J. Exp. Theor. Phys. 131 (1), 160 (2020). https://doi.org/10.1134/S1063776120070109

    Article  ADS  Google Scholar 

  2. S. V. Komogortsev, L. A. Chekanova, I. V. Nemtsev, G. Y. Yurkin, R. S. Iskhakov, G. S. Krainova, N. V. Il’in, V. S. Plotnikov, and D. A. Yatmanov, Inorg. Mater.: Appl. Res. 11 (1), 177 (2020). https://doi.org/10.1134/S2075113320010219

    Article  Google Scholar 

  3. A. N. Yurasov, M. M. Yashin, D. V. Semenova, K. B. Mirzokulov, and E. A. Ganshina, Bull. Russ. Acad. Sci.: Phys. 83 (7), 884 (2019). https://doi.org/10.3103/S1062873819070438

    Article  Google Scholar 

  4. Yu. E. Kalinin, A. V. Sitnikov, and O. V. Stognei, Al’ternat. Energ. Ekol. 54, 9 (2007).

    Google Scholar 

  5. I. V. Bykov, E. A. Gan’shina, A. B. Granovskii, and V. S. Gushchin, Phys. Solid State 42 (3), 498 (2000). https://doi.org/10.1134/1.1131238

    Article  ADS  Google Scholar 

  6. S. A. Gridnev, Yu. E. Kalinin, A. V. Sitnikov, and O. V. Stognei, Nonlinear Phenomena in Nano- and Microheterogeneous Systems (BINOM–Lab. Znanii, Moscow, 2012) [in Russian].

  7. A. N. Matsukatova, A. V. Emelyanov, A. A. Minnekhanov, D. A. Sakharutov, A. Yu. Vdovichenko, R. A. Kamyshinskii, V. A. Demin, V. V. Rylkov, P. A. Forsh, S. N. Chvalun, and P. K. Kashkarov, Tech. Phys. Lett. 46 (1), 73 (2020). https://doi.org/10.1134/S1063785020010277

    Article  ADS  Google Scholar 

  8. A. V. Arkhipov, G. V. Nenashev, and A. N. Aleshin, Fiz. Tverd. Tela 63 (4), 559 (2021). https://doi.org/10.21883/FTT.2021.04.50725.263

    Article  Google Scholar 

  9. W. Li, X. Liu, Y. Wang, Z. Dai, W. Wu, L. Cheng, Y. Zhang, Q. Liu, X. Xiao, and C. Jiang, Appl. Phys. Lett. 108, 153501 (2016). https://doi.org/10.1063/1.4945982

    Article  ADS  Google Scholar 

  10. E. V. Okulich, V. I. Okulich, and D. I. Tetel’baum, Tech. Phys. Lett. 46 (1), 19 (2020). https://doi.org/10.1134/S1063785020010083

    Article  ADS  Google Scholar 

  11. A. Mehonic, A. L. Shluger, D. Gao, I. Valov, E. Miranda, D. Ielmini, A. Bricalli, E. Ambrosi, C. Li, J. J. Yang, Q. Xia, and A. J. Kenyon, Adv. Mater. 30 (43), 1801187 (2018). https://doi.org/10.1002/adma.201801187

    Article  Google Scholar 

  12. Yu. E. Kalinin, A. V. Sitnikov, and O. V. Stognei, Vestn. Voronezh. Gos. Tekh. Univ. 3 (11), 6 (2007).

  13. V. V. Rylkov, S. N. Nikolaev, V. A. Demin, A. V. Emelyanov, A. V. Sitnikov, K. E. Nikiruy, V. A. Levanov, M. Yu. Presnyakov, A. N. Taldenkov, A. L. Vasiliev, K. Yu. Chernoglazov, A. S. Vedeneev, Yu. E. Kalinin, A. B. Granovsky, V. V. Tugushev, et al., J. Exp. Theor. Phys. 126 (3), 353 (2018). https://doi.org/10.1134/S1063776118020152

    Article  ADS  Google Scholar 

  14. Yu. Yu. Tarasevich, Percolation: Theory, Applications, Algorithms (URSS, Moscow, 2002) [in Russian].

    Google Scholar 

  15. A. D. Pomogailo, A. S. Rozenberg, and I. E. Uflyand, Nanoparticles of Metals in Polymers (Nauka, Moscow, 2000) [in Russian].

    Google Scholar 

  16. N. N. Trofimov, M. Z. Kanovich, E. M. Kartashov, V. I. Natrusov, A. T. Ponomarenko, V. G. Shevchenko, V. I. Sokolov, and I. D. Simonov-Emel’yanov, Physics of Composite Materials (Mir, Moscow, 2005), Vol. 2, p. 344 [in Russian].

  17. I. A. Chmutin, S. V. Letyagin, V. G. Shevchenko, and A. T. Ponomarenko, Vysokomol. Soedin. 36, 699 (1994).

    Google Scholar 

  18. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984).

    Book  Google Scholar 

  19. A. V. Sitnikov, I. V. Babkina, Yu. E. Kalinin, A. E. Nikonov, M. N. Kopytin, K. E. Nikirui, A. I. Il’yasov, K. Yu. Chernoglazov, S. N. Nikolaev, A. L. Vasil’ev, A. V. Emel’yanov, V. A. Demin, and V. V. Ryl’kov, Nanoindustriya 13 (S4), 570 (2020). https://doi.org/10.22184/1993-8578.2020.13.4s.570.571

    Article  Google Scholar 

  20. O. G. Udalov, N. M. Chtchelkatchev, A. Glatz, and I. S. Beloborodov, Phys. Rev. B 89, 054203 (2014). https://doi.org/.1103/PhysRevB.89.054203

    Article  ADS  Google Scholar 

  21. L. V. Gurvich, G. V. Karachevtsev, V. N. Kondrat’ev, Yu. A. Lebedev, V. A. Medvedev, V. K. Potapov, and Yu. S. Khodeev, Chemical Bond-Dissociation Energies. Ionization Potential and Electron Affinity (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  22. J. V. Kasiuk, J. A. Fedotova, J. Przewoznik, J. Zukrowski, M. Sikora, Cz. Kapusta, A. Grce, and M. Milosavljevic, J. Appl. Phys. 116, 044301 (2014). https://doi.org/10.1063/1.4891016

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The structure of the nanocomposite was investigated using the equipment of the Resource Center of Electrophysical Methods (National Research Center “Kurchatov Institute”).

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 19-29-03022 mk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Kopytin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sitnikov, A.V., Babkina, I.V., Kalinin, Y.E. et al. The Effect of Oxygen and Water Vapor on the Electric Properties of (Co40Fe40B20)x(LiNbO3)100 – x Nanogranular Composites. Tech. Phys. 66, 1284–1293 (2021). https://doi.org/10.1134/S1063784221090176

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221090176

Navigation