Skip to main content
Log in

Simulation of a Looptop Hard X-ray Source in Turbulent Plasma of Solar Flares

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The kinetics of electron beams accelerated in the collisional plasma of solar (stellar) flares is considered. The stationary ion-acoustic turbulent mode localized at the magnetic looptop and magnetic fluctuations are taken into account. The astrophysical aspect of the propagation process is related to the interpretation of hard X-rays in the plasma of flare loops. For the plasma density in the solar flare looptop not exceeding 1010 cm–3 and the ion-acoustic mode with the energy density to the thermal energy of the plasma ~5 × 10–5–10–3 and magnetic fluctuations with a level of 5 × 10–2 the bright hard X-ray source in the looptop does not appear in the model of the isotropic pitch-angle distribution of accelerated electrons. In the anisotropic electron injection with a hard energy spectrum and ion-acoustic turbulence, the coronal hard X-ray source can exist for a short time after the turbulence generation starts. And only in the case of a soft energy spectrum of accelerated electrons (power spectrum index >5) and a high plasma density at the magnetic looptop >1010 cm–3, a bright coronal hard X-ray source is generated at energies of 25–50 keV for any pitch-angular distribution of accelerated electrons at the injection time. A significant effect of turbulence on the distribution of the linear degree of hard X-ray polarization along the loop is shown, leading to a decrease in the extreme values in the coronal part by 5–35%. The integral values of the hard X-ray polarization do not exceed 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. P. Saint-Hilaire, S. Krucker, and R. P. Lin, Sol. Phys. 250 (1), 53 (2011). https://doi.org/10.1007/s11207-008-9193-9

    Article  ADS  Google Scholar 

  2. S. Masuda, T. Kosugi, H. Hara, S. Tsuneta, and Y. Ogawara, Nature 371, 495 (1994). https://doi.org/10.1038/371495a0

    Article  ADS  Google Scholar 

  3. S. Masuda, T. Kosugi, H. Hara, T. Sakao, K. Shibata, and S. Tsuneta, Publ. Astron. Soc. Jpn. 47 (5), 677 (1995).

    ADS  Google Scholar 

  4. M. Tomczak and T. Ciborski, Astron. Astrophys. 461, 315 (2007). https://doi.org/10.1051/0004-6361:20066115

    Article  ADS  Google Scholar 

  5. Y. W. Jiang, S. Liu, W. Liu, and V. Petrosian, Astrophys. J. 638 (2), 1140 (2005). https://doi.org/10.1086/498863

    Article  ADS  Google Scholar 

  6. T. Bai and R. Ramaty, Astrophys. J. 219, 705 (1978). https://doi.org/10.1086/155830

    Article  ADS  Google Scholar 

  7. E. P. Kontar, N. H. Bian, A. G. Emslie, and N. Vilmer, Astrophys. J. 780, 176 (2014). https://doi.org/10.1088/0004-637X/780/2/176

    Article  ADS  Google Scholar 

  8. V. F. Melnikov, Y. E. Charikov, and I. V. Kudryavtsev, Geomagn. Aeron. 55 (7), 983 (2015). https://doi.org/10.1134/S0016793215070130

    Article  ADS  Google Scholar 

  9. T. D. Arber and V. F. Melnikov, Astrophys. J. 690 (1), 238 (2009). https://doi.org/10.1088/0004-637X/690/1/238

    Article  ADS  Google Scholar 

  10. J. C. Brown, D. B. Melrose, and D. S. Spicer, Astrophys. J. 228, 592 (1979). https://doi.org/10.1086/156883

    Article  ADS  Google Scholar 

  11. Y. E. Charikov and A. N. Shabalin, Geomagn. Aeron. 56 (8), 1068 (2016). https://doi.org/10.1134/S0016793216080041

    Article  ADS  Google Scholar 

  12. V. N. Tsytovich, Nonlinear Effects in Plasma (Springer, Boston, MA, 1970).

    Book  Google Scholar 

  13. V. N. Tsytovich, Theory of Turbulent Plasma (Springer, New York, 1977).

    Book  Google Scholar 

  14. I. V. Kudryavtsev and Yu. E. Charikov, Astron. Zh. 68 (4–6), 825 (1991).

  15. H. L. Rowland and L. Vlahos, Astron. Astrophys. 142 (2), 219 (1985).

    ADS  Google Scholar 

  16. G. H. J. van den Oord, Astron. Astrophys. 234 (1–2), 496 (1990).

  17. J. C. Allred, S. L. Hawley, W. P. Abbett, and M. Carlsson, Astrophys. J. 630 (1), 573 (2005). https://doi.org/10.1086/431751

    Article  ADS  Google Scholar 

  18. V. F. Melnikov, Y. E. Charikov, and I. V. Kudryavtsev, Geomagn. Aeron. 53 (7), 863 (2013). https://doi.org/10.1134/S0016793213070153

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Shabalin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charikov, Y.E., Shabalin, A.N. Simulation of a Looptop Hard X-ray Source in Turbulent Plasma of Solar Flares. Tech. Phys. 66, 1092–1099 (2021). https://doi.org/10.1134/S1063784221080053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221080053

Navigation