Skip to main content
Log in

Local Structure of Copper Centers Obtained during Solid-Phase Synthesis in Copper–Mordenite Zeolite

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The influence of temperature conditions for synthesis on the nearest-neighbor environment of copper atoms in copper–mordenite zeolites produced by solid-phase ion exchange has been investigated. The models of the local atomic structure of active copper centers in copper–mordenite zeolite at 300 and 400°C have been established using two complementary techniques: X-ray absorption spectroscopy and density functional theory. It has been found that, at 300°C, the copper atom does not have another one in its nearest-neighbor environment (monocentric model), whereas at 400°C the center contains at least two copper atoms, which form Cu–O–Cu bridges. The structural parameters of Cu–O bonds have been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. S. E. Bozbag, E. M. C. Alayon, J. Pecháček, M. Nachtegaal, M. Ranocchiari, and J. A. van Bokhoven, Catal. Sci. Technol. 6 (13), 5011 (2016). https://doi.org/10.1039/C6CY00041J

    Article  Google Scholar 

  2. E. M. Alayon, M. Nachtegaal, M. Ranocchiari, and J.  A. van Bokhoven, Chem. Commun. 48 (3), 404 (2012). https://doi.org/10.1039/C1CC15840F

    Article  Google Scholar 

  3. S. Grundner, W. Luo, M. Sanchez-Sanchez, and J. A. Lercher, Chem. Commun. 52 (12), 2553 (2016). https://doi.org/10.1039/C5CC08371K

    Article  Google Scholar 

  4. E. M. C. Alayon, M. Nachtegaal, E. Kleymenov, and J. A. van Bokhoven, Microporous Mesoporous Mater. 166, 131 (2013). https://doi.org/10.1016/j.micromeso.2012.04.054

    Article  Google Scholar 

  5. J. S. Woertink, P. J. Smeets, M. H. Groothaert, M.  A. Vance, B. F. Sels, R. A. Schoonheydt, and E. I. Solomon, Proc. Natl. Acad. Sci. U.S.A. 106 (45), 18908 (2009). https://doi.org/10.1073/pnas.0910461106

    Article  ADS  Google Scholar 

  6. C. Buono, A. Martini, I. A. Pankin, D.K. Pappas, C. Negri, K. Kvande, K. A. Lomachenko, and E. Borfecchia, Radiat. Phys. Chem. 175, 108111 (2020). https://doi.org/10.1016/j.radphyschem.2018.12.031

    Article  Google Scholar 

  7. V. L. Sushkevich, O. V. Safonova, D. Palagin, M. A. Newton, and J. A. van Bokhoven, Chem. Sci. 11, 5299 (2020). https://doi.org/10.1039/D0SC01472A

    Article  Google Scholar 

  8. N. V. Beznis, B. M. Weckhuysen, and J. H. Bitter, Catal Lett. 138 (1–2), 14 (2010). https://doi.org/10.1007/s10562-010-0380-6

  9. C. Lamberti, S. Bordiga, M. Salvalaggio, G. Spoto, A. Zecchina, F. Geobaldo, G. Vlaic, and M. Bellatreccia, J. Phys. Chem. B 101 (3), 344 (1997). https://doi.org/10.1021/jp9601577

    Article  Google Scholar 

  10. C. Lamberti, S. Bordiga, A. Zecchina, M. Salvalaggio, F. Geobaldo, and C. Otero Areán, J. Chem. Soc., Faraday Trans. 94 (10), 1519 (1998). https://doi.org/10.1039/A708778K

    Article  Google Scholar 

  11. V. V. Srabionyan, G. B. Sukharina, S. Y. Kaptelinin, V. A. Durymanov, A. M. Ermakova, T. I. Kurzina, L. A. Avakyan, and L. A. Bugaev, Phys. Solid State 62 (7), 1222 (2020). https://doi.org/10.1134/S1063783420070252

    Article  Google Scholar 

  12. L. Braglia, E. Borfecchia, L. Maddalena, S. Øien, K. A. Lomachenko, A. L. Bugaev, S. Bordiga, A. V. Soldatov, K. P. Lillerud, and C. Lamberti, Catal. Today 283, 89 (2017). https://doi.org/10.1016/j.cattod.2016.02.039

    Article  Google Scholar 

  13. G. Smolentsev, G. Sukharina, A. V. Soldatov, and L. X. Chen, Nucl. Instrum. Methods Phys. Res., Sect. A 603 (1–2), 122 (2009). https://doi.org/10.1016/S0168-9002(09)00773-6

  14. G. B. Sukharina, A. N. Kravtsova, A. V. Soldatov, Y. V. Zubavichus, N. A. Kryuchkova, and N. Mazalov, J. Phys.: Conf. Ser. 190 (1), 012148 (2009).

    Google Scholar 

  15. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77 (18), 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  16. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, et al., J. Phys.: Condens. Matter. 21 (39), 395502 (2009).

    Google Scholar 

  17. B. Ravel and M. Newville, J. Synchrotron Radiat. 12 (4), 537 (2005). https://doi.org/10.1107/S0909049505012719

    Article  Google Scholar 

  18. Y. Joly, Phys. Rev. B 63 (12), 125120 (2001).

    Article  ADS  Google Scholar 

  19. G. Henkelman and H. Jónsson, J. Chem. Phys. 113 (22), 9978 (2000). https://doi.org/10.1063/1.1323224

    Article  ADS  Google Scholar 

  20. G. Henkelman, B. P. Uberuaga, and H. A. Jónsson, J. Chem. Phys. 113 (22), 9901 (2000). https://doi.org/10.1063/1.1329672

    Article  ADS  Google Scholar 

  21. E. L. Kolsbjerg, M. N. Groves, and B. Hammer, J. Chem. Phys. 145 (9), 094107 (2016). https://doi.org/10.1063/1.4961868

    Article  ADS  Google Scholar 

  22. J. Cejka, Zeolites and Ordered Mesoporous Materials: Progress and Prospects (Elsevier, Prague, 2005).

    Google Scholar 

  23. G. R. Hays, W. A. van Erp, N. C. M. Alma, P. A. Couperus, and R. Huis, Zeolites 4 (4), 377 (1984). https://doi.org/10.1016/0144-2449(84)90015-0

    Article  Google Scholar 

  24. C. A. Fyfe, G. C. Gobbi, and G. L. Kennedy, J. Phys. Chem. 88 (15), 3248 (1984). https://doi.org/10.1021/j150659a023

    Article  Google Scholar 

  25. C. Baerloche and L. B. McCusker, Database of Zeolite Structures (1996).

  26. T. Takaishi, M. Kato, and K. Itabashi, Zeolites 15 (1), 21 (1995). https://doi.org/10.1016/0144-2449(94)00015-K

    Article  Google Scholar 

  27. L. A. Bugaev, L. A. Avakyan, V. V. Srabionyan, and A. L. Bugaev, Phys. Rev. B 82 (6), 064204 (2010). https://doi.org/10.1103/PhysRevB.82.064204

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Prof. J. van Bokhoven from the Swiss Federal Institute of Technology (ETH) for assistance. L.A. Bugaev and L.A. Avakyan are indebted to the administration of Southern Federal University for support.

Funding

This study was supported by the Russian Foundation for Basic Research, grant no. 18-32-000586_mol_a.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Pryadchenko or A. M. Ermakova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pryadchenko, V.V., Sukharina, G.B., Ermakova, A.M. et al. Local Structure of Copper Centers Obtained during Solid-Phase Synthesis in Copper–Mordenite Zeolite. Tech. Phys. 66, 1018–1024 (2021). https://doi.org/10.1134/S1063784221070124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221070124

Navigation