Skip to main content
Log in

The Effect of Thermionic Electron Emission on the Formation of Amorphous Metallic Nanoparticles in a Laser-Jet Plasma

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

In recent years, the interest in using the structures consisting of amorphous nanoparticles has increased significantly due to their peculiar electric, magnetic, and catalytic properties. One important problem in the practical application of such particles is the development of new technologies for their formation. The studies aimed at the solution of this problem reveal that fragmentation of microdroplets of metals charged in a laser jet plasma is the most effective method for obtaining of amorphous metallic nanoparticles. However, in spite of the fact that the application of this method has made it possible to obtain such structures from various types of metals, the theoretical analysis of microdroplet fragmentation effect has been performed without detailed investigation of nanodroplet charging, which limits to a considerable extent the use of available theoretical models for developing new technologies. We propose a model that makes it possible to formulate more exactly the requirements for the parameters of laser jet plasma, for which effective fragmentation of microdroplets of metals to a nanometer size is realized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. K. Suzuki, H. Fujimori, and K. Hashimoto, Materials Science of Amorphous Metals, Ed. by T. Mosumoto (Ohmu, Tokyo, 1982).

    Google Scholar 

  2. T. Gloriant, J. Non-Cryst. Solids 316 (1), 96 (2003). https://doi.org/10.1016/S0022-3093(02)01941-5

    Article  ADS  Google Scholar 

  3. C. Suryanarayana and A. Inoue, Bulk Metallic Glasses (CRC, Boca Raton, 2017).

    Google Scholar 

  4. M. Avrami, J. Chem. Phys. 7 (12), 1103 (1939). https://doi.org/10.1063/1.1750380

    Article  ADS  Google Scholar 

  5. I. V. Zolotukhin, Physical Properties of Amorphous Metals (Metallurgiya, Moscow, 1986) [in Russian].

    Google Scholar 

  6. H. A. Davies and J. B. Hull, J. Mater. Sci. 11 (2), 215 (1976). https://doi.org/10.1007/BF00551430

    Article  ADS  Google Scholar 

  7. C. D. Hendricks and J. M. Schneider, Am. J. Phys. 31 (6), 450 (1963). https://doi.org/10.1119/1.1969579

    Article  ADS  Google Scholar 

  8. A. I. Grigor’ev and S. O. Shiryaeva, Zh. Tekh. Fiz. 61 (3), 19 (1991).

    Google Scholar 

  9. S. A. Ryce and D. A. Patriarche, Can. J. Phys. 43 (12), 2192 (1965). https://doi.org/10.1139/p65-213

    Article  ADS  Google Scholar 

  10. H. M. A. Elghazaly and G. S. P. Castle, IEEE Trans. Ind. Appl. 25 (1), 48 (1989). https://doi.org/10.1109/28.18868

    Article  Google Scholar 

  11. V. M. Kozhevin, D. A. Yavsin, V. M. Kouznetsov, V.  M.  Busov, V. M. Mikushkin, S. Yu. Nikonov, S. A. Gurevich, and A. Kolobov, J. Vac. Sci. Technol., B 18 (3), 1402 (2000). https://doi.org/10.1116/1.591393

    Article  Google Scholar 

  12. T. N. Rostovshchikova, E. S. Lokteva, E. V. Golubina, K. I. Maslakov, S. A. Gurevich, D. A. Yavsin, and V. M. Kozhevin, “Advanced size-selected catalysts prepared by laser electrodispersion,” in Advanced Nanomaterials for Catalysis and Energy (Elsevier, 2019), p. 61.

    Google Scholar 

  13. V. G. Dudnikov and A. L. Shabalin, Preprint No. 87-63 “Electrohydrodynamic sources of ion beams,” IYaF SO RAN (Budker Inst. Nucl. Phys., Sib. Branch Russ. Acad. Sci., Novosibirsk, 1987).

    Google Scholar 

  14. A. P. Bakhtinov, V. B. Boledzyuk, Z. D. Kovalyuk, Z. R. Kudrynsky, O. S. Lytvyn, and A. D. Shevchenko, Phys. Solid State 55 (6), 1148 (2013). https://doi.org/10.1134/S1063783413060048

    Article  ADS  Google Scholar 

  15. J. F. Mahoney, S. Taylor, and J. Perel, IEEE Trans. Ind. Appl. 23 (2), 197 (1987). https://doi.org/10.1109/TIA.1987.4504894

    Article  Google Scholar 

  16. C. Bartoli, H. Von Rohden, S. P. Thompson, and J. Blommers, Vacuum 34 (1–2), 43 (1984). https://doi.org/10.1016/0042-207X(84)90105-2

  17. Y. E. Kim, M. Rabinowitz, G. S. Chulick, and R. A. Rice, Mod. Phys. Lett. B 5 (6), 427 (1991). https://doi.org/10.1142/S0217984991000502

    Article  ADS  Google Scholar 

  18. V. M. Kozhevin, D. A. Yavsin, I. P. Smirnova, M. M. Kulagina, and S. A. Gurevich, Phys. Solid State 45 (10), 1993 (2003). https://doi.org/10.1134/1.1620108

    Article  ADS  Google Scholar 

  19. D. S. Ilyushenkov, V. I. Kozub, D. A. Yavsin, V. M. Ko-zhevin, I. N. Yassievich, T. T. Nguyen, E. H. Bruck, and S. A. Gurevich, J. Magn. Magn. Mater. 321 (5), 343 (2009). https://doi.org/10.1016/j.jmmm.2008.09.024

    Article  ADS  Google Scholar 

  20. T. N. Rostovshchikova, V. V. Smirnov, V. M. Kozhevin, D. A. Yavsin, M. A. Zabelin, I. N. Yassievich, and S. A. Gurevich, Appl. Catal., A 296 (1), 70 (2005). https://doi.org/10.1016/j.apcata.2005.08.032

  21. A. Ya. Khairullina, T. V. Ol’shanskaya, V. A. Babenko, V. M. Kozhevin, D. A. Yavsin, and S. A. Gurevich, Opt. Spectrosc. 98 (1), 96 (2005). https://doi.org/10.1134/1.1858046

    Article  ADS  Google Scholar 

  22. V. M. Verzhbitskii, Foundations of Numerical Methods (Vysshaya Shkola, Moscow, 2002) [in Russian].

    Google Scholar 

  23. P. M. Chung, L. Talbot, and K. J. Touryan, Electric Probes in Stationary and Flowing Plasmas: Theory and Application (Springer Science & Business Media, 2013).

    Google Scholar 

  24. V. A. Rozhanskii, Plasma Theory (Lan’, St. Petersburg, 2012) [in Russian].

  25. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart, and Winston, New York, 1976).

    MATH  Google Scholar 

  26. A. B. Petrin, J. Exp. Theor. Phys. 109, 314 (2009). https://doi.org/10.1134/S1063776109080184

    Article  ADS  Google Scholar 

  27. J. T. Holgate and M. Coppins, Phys. Rev. Appl. 7 (4), 044019 (2017). https://doi.org/10.1103/PhysRevApplied.7.044019

    Article  ADS  Google Scholar 

  28. O. W. Richardson, The Emission of Electricity from Hot Bodies (Longmans, 1921).

    Google Scholar 

  29. R. H. Fowler and L. Nordheim, Proc. R. Soc., Ser. A 119 (781), 173 (1928). https://doi.org/10.1098/rspa.1928.0091

  30. R. G. Forbes, Appl. Phys. Lett. 89 (11), 113122 (2006). https://doi.org/10.1063/1.2354582

    Article  ADS  Google Scholar 

  31. E. L. Murphy and R. H. Good, Jr., Phys. Rev. 102 (6), 1464 (1956). https://doi.org/10.1103/PhysRev.102.1464

    Article  ADS  Google Scholar 

  32. Handbook of Physical Quantities, Eds. by I. S. Grigoriev and E. Z. Meilikhov (CRC, Boca Raton, 1996).

  33. S. O. Shiryaeva, Tech. Phys. Lett. 26, 137 (2000). https://doi.org/10.1134/1.1262767

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Bormatov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bormatov, A.A., Kozhevin, V.M. & Gurevich, S.A. The Effect of Thermionic Electron Emission on the Formation of Amorphous Metallic Nanoparticles in a Laser-Jet Plasma. Tech. Phys. 66, 705–715 (2021). https://doi.org/10.1134/S1063784221050078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221050078

Navigation