Skip to main content
Log in

The Influence of Carbon Nanocomposite Anisotropic Conductivity on the Parameters of a C-Band Horn Antenna

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The influence of anisotropic conductivity in composites used as antenna materials on the properties of antenna feeder microwave devices has been considered. Variously designed L- and C-band horn antennas with a graphene-containing epoxy binder have been made of carbon composites to check the feasibility of this effect. It has been shown by studying the polarization characteristics of these antennas that the anisotropic conductivity of the walls of the carbon composite horn antenna’s waveguide section changes the antenna parameters, with this change being more noticeable in high-frequency C-band antennas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. I. B. Vendik and O. G. Vendik, Tech. Phys. 58 (1), 1 (2013). https://doi.org/10.1134/S1063784213010234

    Article  Google Scholar 

  2. V. Slyusar, Elektronika: Nauka, Tekhnol., Biznes, No. 7 (97), 70 (2009).

    Google Scholar 

  3. E. Lier, IEEE Antennas Propag. Mag. 52 (2), 31 (2010). https://doi.org/10.1109/MAP.2010.5525564

    Article  ADS  Google Scholar 

  4. M. Lashab, H. I. Hraga, A. A. Read, C. Zebiri, F. Benabdelaziz, and M. R. Jones, PIERS Online 7, 161 (2011). https://doi.org/10.1109/ICMCS.2014.6911410

    Article  Google Scholar 

  5. R.-B. Hwang, H.-W. Liu, and C.-Y. Chin, Prog. Electromagn. Res. 93, 255 (2009). https://doi.org/10.2528/PIER09050606

    Article  Google Scholar 

  6. N. A. Testoedov, V. V. Dvirnyi, V. E. Kosenko, V. I. Lavrov, R. P. Turkenich, S. M. Roskin, A. A. Ankudinov, G. I. Ovechkin, G. V. Dvirnyi, L. V. Dolgov, V. V. Golovanova, D. E. Kurbatov, V. A. Bartenev, and A. I. Velichko, RF Patent No. RU2427949 (April 20, 2011).

  7. I. V. Bychkov, I. S. Zotov, and A. A. Fedii, Tech. Phys. Lett. 37 (7), 689 (2011). https://doi.org/10.1134/S1063785011070182

    Article  Google Scholar 

  8. N. E. Kazantseva, N. G. Ryvkina, and I. A. Chmutin, J. Commun. Technol. Electron. 48 (2), 173 (2003).

    Google Scholar 

  9. Y. Chung-Yen, US Patent N-US2013/0004658 (A1) (January 3, 2013).

  10. Choi Choon Gi and Oh Sang Soon, US Patent NUS2012/ 013989 (A1) (January 25, 2012).

  11. G. Artner, P. K. Gentner, J. Nicolics, and C. F. Mecklenbräuker, Int. J. Antennas Propag. 2017, 6152651 (2017). https://doi.org/10.1155/2017/6152651

  12. A. Scida, S. Haque, E. Treossi, A. Robinson, S. Smerzi, S. Ravesi, S. Borini, and V. Palermo, Mater. Today 21 (3), 223 (2018). https://doi.org/10.1016/j.mattod.2018.01.007

    Article  Google Scholar 

  13. G. Artner, R. Langwieser, and C. F. Mecklenbräuker, “Carbon fiber reinforced polymer as antenna ground plane material up to 10 GHz,” in Proc. 11th Eur. Conf. on Antennas and Propagation (EUCAP), Paris, 2017, p. 3601. https://doi.org/10.23919/EuCAP.2017.7928128

  14. V. V. Rybin, P. A. Kuznetsov, I. V. Ulin, B. V. Farmakovskii, and V. E. Bakhareva, Vopr. Materialoved., No. 1 (45), 169 (2006).

  15. N. A. Dugin, T. M. Zaboronkova, and E. N. Myasnikov, Tech. Phys. Lett. 42 (6), 598 (2016). https://doi.org/10.1134/S1063785016060043

    Article  ADS  Google Scholar 

  16. N. A. Dugin, T. M. Zaboronkova, E. N. Myasnikov, and G. R. Belyaev, Tech. Phys. 63 (2), 268 (2018). https://doi.org/10.1134/S1063784218020111

    Article  Google Scholar 

  17. N. A. Dugin, T. M. Zaboronkova, E. N. Myasnikov, G. R. Belyaev, and V. V. Lobastov, J. Commun. Technol. Electron. 63, 864 (2018). https://doi.org/10.1134/S1064226918080053

    Article  Google Scholar 

  18. N. A. Dugin, T. M. Zaboronkova, C. Krafft, and G. R. Belyaev, Electronics 9 (4), 590 (2020). https://doi.org/10.3390/electronics9040590

    Article  Google Scholar 

  19. H. Shi, J. Chen, A. Zhang, and Y. Jiang, Frequenz 67 (9–10), 271 (2013). https://doi.org/10.1515/freq-2012-0136

  20. A. V. Kudrin, T. M. Zaboronkova, A. S. Zaitseva, and B. Spagnolo, IEEE Trans. Antennas Propag. 68, 195 (2020). https://doi.org/10.2528/PIERC18042401

    Article  ADS  Google Scholar 

  21. S. V. Ivanov, A. V. Nazarov, and N. A. Chechin, Fiz. Voln. Protsess. Radiotekh. Sist. 14 (4), 6 (2011).

    Google Scholar 

  22. S. V. Ivanov and A. V. Nazarov, Antenny, No. 6, 24 (2013).

  23. https://zoltek.com/products/px35.

  24. Techniques for Measurement of Microwave Antenna Characteristics, Ed. by N. M. Tseitlin (Radio i Svyaz’, Moscow, 1985) [in Russian].

    Google Scholar 

Download references

Funding

Experiments were supported by the Ministry of Science  and Higher Education of the Russian Federation (RFMEFI62020X0003 the project no. 075-15-2020-529 in the framework of the base part of state task). Experimental data processing and data analysis were supported by the Russian Science Foundation, grant no. 20-12-00114.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Dugin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dugin, N.A., Zaboronkova, T.M., Belyaev, G.R. et al. The Influence of Carbon Nanocomposite Anisotropic Conductivity on the Parameters of a C-Band Horn Antenna. Tech. Phys. 66, 571–579 (2021). https://doi.org/10.1134/S106378422104006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378422104006X

Navigation