Skip to main content
Log in

Parameters of Phase Synchronization in Electroencephalographic Patterns as Markers of Cognitive Impairment

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Differences in phase synchronization between intermittent photic stimulation and electrical activity of the brain recorded as electroencephalographic (EEG) patterns were studied in two groups of patients with chronically elevated arterial pressure with and without cognitive impairment. It was found that the parameters of phase synchronization calculated using synchrosqueezed wavelet transform of the light stimulus and the EEG pattern can be used as neurophysiological markers of moderate cognitive impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. J. M. E. Drake, K. E. Shy, and L. Liss, Clin. Electroencephalogr. 20, 153 (1989).

    Article  Google Scholar 

  2. A. I. Fedotchev, A. T. Bondar, S. G. Matrusov, V. S. Semenov, and A. G. Soin, Usp. Physiol. Nauk 37 (4), 82 (2006).

    Google Scholar 

  3. O. E. Dick and I. A. Svyatogor, Neurocomputing 165, 361 (2015). https://doi.org/10.1016/j.neucom.2015.03.025

    Article  Google Scholar 

  4. A. I. Fedotchev, A. T. Bondar, and I. G. Akoev, Hum. Physiol. 26, 64 (2000).

    Article  Google Scholar 

  5. M. Coull and T. A. Pedley, Electroencephalogr. Clin. Neurophysiol. 44, 353 (1978).

    Article  Google Scholar 

  6. D. Gasecki, M. Kwarciany, W. Nyka, and K. Narkiewicz, Curr. Hypertens. Rep. 15 (6), 547 (2013). https://doi.org/10.1007/s11906-013-0398-4

    Article  Google Scholar 

  7. D. V. Moretti, C. Miniussi, and G. B. Frison, Clin. Neurophysiol. 118, 1866 (2007).

    Article  Google Scholar 

  8. O. E. Dick, I. A. Svyatogor, A. D. Nozdrachev, and N. L. Guseva, Hum. Physiol. 41, 261 (2015). https://doi.org/10.1134/S0362119715030172

    Article  Google Scholar 

  9. S. V. Bozhokin, Tech. Phys. 55, 1248 (2010). https://doi.org/10.1134/S1063784210090033

    Article  Google Scholar 

  10. S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, and C. S. Zhou, Phys. Rep. 366 (1–2), 1 (2002). https://doi.org/10.1016/S0370-1573(02)00137-0

  11. A. S. Pikovsky, M. G. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge Univ. Press, Cambridge, 2001).

    Book  Google Scholar 

  12. L. Cohen, Time-Frequency Analysis (Prentice Hall, Englewood Cliffs, NJ, 1995).

    Google Scholar 

  13. B. Kralemann, M. Fruhwirth, A. Pikovsky, M. Rosenblum, T. Kenner, J. Schaefer, and M. Moser, Nat. Commun. 4, 2418 (2013). https://doi.org/10.1038/ncomms3418

    Article  ADS  Google Scholar 

  14. M. G. Rosenblum, L. Cimponeriu, A. Bezerianos, A. Patzak, and R. Mrowka, Phys. Rev. E 65, 041909 (2002). https://doi.org/10.1103/PhysRevE.65.041909

    Article  ADS  Google Scholar 

  15. Q. Zhang, A. R. Patwardhan, C. F. Knapp, and J. M. Evans, Eur. J. Appl. Physiol. 115 (2), 417 (2015). https://doi.org/10.1007/s00421-014-3017-4

    Article  Google Scholar 

  16. I. Daubechies, Ten Lectures on Wavelets (SIAM, Philadelphia, PA, 1992).

    Book  Google Scholar 

  17. A. B. Bespyatov, M. B. Bodrov, V. I. Gridnev, V. I. Ponomarenko, and M. D. Prokhorov, Nonlinear Phenom. Complex Syst. 6 (4), 885 (2003).

    Google Scholar 

  18. E. Hramov, A. A. Koronovskii, V. I. Ponomarenko, and M. D. Prokhorov, Phys. Rev. E 73, 026208 (2006). https://doi.org/10.1103/PhysRevE.73.026208

    Article  ADS  Google Scholar 

  19. O. E. Dick and I. A. Svyatogor, Neurocomputing 82, 207 (2012). https://doi.org/10.1016/j.neucom.2011.11.013

    Article  Google Scholar 

  20. O. E. Dick, Neurocomputing 243, 142 (2017). https://doi.org/10.1016/j.neucom.2017.03.008

    Article  Google Scholar 

  21. I. Daubechies, J. Lu, and H. T. Wu, Appl. Comput. Harmon. Anal. 30, 243 (2011). https://doi.org/10.1016/j.acha.2010.08.002

    Article  MathSciNet  Google Scholar 

  22. J. B. Tary, R. H. Herrera, and M. van der Baan, Philos. Trans. R. Soc. A 376, 20170254 (2018). https://doi.org/10.1098/rsta.2017.0254

  23. D. Iatsenko, P. V. E. McClintock, and A. Stefanovska, Digital Signal Process. 42, 1 (2015). https://doi.org/10.1016/j.dsp.2015.03.004

    Article  MathSciNet  Google Scholar 

  24. G. Thakur, E. Brevdo, N. S. Fuckar, and H.-T. Wu, Signal Process. 93, 1079 (2013).

    Article  Google Scholar 

  25. G. P. Torrence, Bull. Am. Meteorol. Soc. 79, 61 (1998).

    Article  ADS  Google Scholar 

  26. R. Q. Quiroga, A. Kraskov, T. Kreuz, and P. Grassberger, Phys. Rev. E 65, 041903 (2002). https://doi.org/10.1103/PhysRevE.65.041903

    Article  ADS  Google Scholar 

  27. F. Mormann, K. Lehnertz, P. David, and C.E. Elger, Physica D 144, 358 (2000).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to I.A. Svyatogor, senior researcher at the Pavlov Institute of Physiology, for the courteously provided EEG records.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. E. Dik or A. L. Glazov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by D. Timchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dik, O.E., Glazov, A.L. Parameters of Phase Synchronization in Electroencephalographic Patterns as Markers of Cognitive Impairment. Tech. Phys. 66, 560–570 (2021). https://doi.org/10.1134/S1063784221040058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221040058

Navigation