Skip to main content
Log in

Measurement of Essentially Nonstationary Heat Fluxes by a Bismuth-Based Gradient Sensor

  • GASES AND LIQUIDS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The gradient heat flux sensor made of a bismuth single crystal is calibrated. The volt–watt sensitivity of the sensor is determined and the method of data processing based on the 1D heat conduction equation for a thin plate is proposed. This method is tested on experimental data obtained for the initiation of a laser discharge in a calm atmosphere and in a supersonic gas flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. N.F. Krasnov, V.N. Koshevoi, and A.N. Danilov, Applied Aerodynamics (Vysshaya Shkola, Moscow, 1974) [in Russian].

    Google Scholar 

  2. A. M. Kharitonov, Techniques and Methods of Aerophysical Experiment, Vol. 2: Methods and Means of Aerial Measurements (Novosibirsk Gos. Tekh. Univ., Novosibirsk, 2007) [in Russian].

  3. N. V. Pilipenko, Principles of Design of Combined Receivers of the Heat Flow: Textbook (ITMO Univ., St. Petersburg, 2016) [in Russian].

    Google Scholar 

  4. H. Knauss, T. Roediger, D. A. Bountin, B. V. Smorodsky, A. A. Maslov, and J. Srulijes, J. Spacecr. Rockets 46 (2), 255 (2009). https://doi.org/10.2514/1.32011

    Article  ADS  Google Scholar 

  5. S. Z. Sapozhnikov, V. Yu. Mitiakov, and A. V. Mitiakov, Tech. Phys. 49 (7), 920 (2004). https://doi.org/10.1134/1.1778869

    Article  Google Scholar 

  6. A. A. Snarskii, A. M. Pal’ti, and A. A. Ashcheulov, Semiconductors 31 (11), 1101 (1997).

    Article  ADS  Google Scholar 

  7. A. G. Samoylovich, Thermoelectric and Thermomagnetic Methods of Energy Transformation. Lecture Notes (LKI, Moscow, 2007) [in Russian].

    Google Scholar 

  8. S. V. Bobashev, Yu. P. Golovachov, N. P. Mende, P. A. Popov, B. I. Reznikov, V. A. Sakharov, A. A. Schmidt, and A. S. Chernyshev, Tech. Phys. 53 (12), 1634 (2008). https://doi.org/10.1134/S1063784208120189

    Article  Google Scholar 

  9. S. Z. Sapozhnikov, V. Yu. Mityakov, and A. V. Mityakov, Gradient Heat Flow Sensors (St. Petersburg Gos. Polytekh. Univ., St. Petersburg, 2003) [in Russian].

    Google Scholar 

  10. T. G. Grishchenko, L. V. Dekusha, and L. I. Vorob’ev, Thermometry: Theory, Methodology, Practice, Vol. 1: Methods and Tools for Measuring Heat Flow (Inst. Tekh. Teplofiz., Ukraine Nats. Akad. Nauk, Kiev, 2017) [in Russian].

  11. S. V. Bobashev, N. P. Mende, P. A. Popov, B. I. Reznikov, V. A. Sakharov, S. Z. Sapozhnikov, V. Yu. Mityakov, A. V. Mityakov, D. A. Buntin, A. A. Maslov, H. Knauss, and T. Roediger, Tech. Phys. Lett. 35 (3), 214 (2009). https://doi.org/10.1134/S1063785009030067

    Article  ADS  Google Scholar 

  12. A. V. Mityakov, Candidate’s Dissertation in Technical Sciences (St. Petersburg Gos. Tekh. Univ., St. Petersburg, 2000).

  13. S. Z. Sapozhnikov, V. Yu. Mityakov, and A. V. Mityakov, High Temp. 42 (4), 629 (2004). https://doi.org/10.1023/B:HITE.0000039993.76288.01

    Article  Google Scholar 

  14. P. A. Popov, B. I. Reznikov, V. A. Sakharov, and A. S. Shteinberg, Tech. Phys. Lett. 37 (1), 12 (2011). https://doi.org/10.1134/S1063785011010111

    Article  ADS  Google Scholar 

  15. V. A. Lashkov, I. Ch. Mashek, V. I. Ivanov, Yu. F. Kolesnichenko, and M. I. Rivkin, Proc. 46th AIAA Aerospace Sciences Meeting and Exhibit (January 7–10, 2008, Reno, Nevada), AIAA 2008-1410. https://doi.org/10.2514/6.2008-1410

  16. A. V. Lykov, Theory of Heat Conduction (Vysshaya Shkola, Moscow, 1967) [in Russian].

    Google Scholar 

  17. D. Knight, J. Aerosp. Lab 10 (2), (2015). https://doi.org/10.12762/2015.AL10-02

  18. P. Bletzinger, B. N. Ganguly, D. Van Wie, and A. Garscadden, J. Phys. D: Appl. Phys. 38 (4), R33 (2005). https://doi.org/10.1088/0022-3727/38/4/R01

    Article  ADS  Google Scholar 

  19. N. Glumac, G. Elliott, and M. Boguszko, AIAA J. 43 (9), 1984 (2005). https://doi.org/10.2514/1.14886

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (project nos. 19-31-90071 and 18-08-00707). Calculations were performed using computer resources of the Computer Center of the St. Petersburg State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Dobrov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobrov, Y.V., Lashkov, V.A., Mashek, I.C. et al. Measurement of Essentially Nonstationary Heat Fluxes by a Bismuth-Based Gradient Sensor. Tech. Phys. 66, 229–234 (2021). https://doi.org/10.1134/S1063784221020109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221020109

Navigation