Skip to main content
Log in

Elastic Properties of Guanidine Hydrochloride Solutions with Various Concentrations in the Gigahertz Frequency Range

  • BIOPOLYMERS DYNAMICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The temperature dependences of the veloсity of hypersound (V(T)) in solutions with various concentrations of guanidine hydrochloride (GndHCl) are studied by Brillouin–Mandelstam light scattering spectroscopy in the temperature range from 263 to 353 K. It is shown that the temperature dependence of the sound velocity has a pronounced maximum at low concentrations of GndHCl. An increase in the concentration of GndHCl in a solution is accompanied by a shift of the maximum to the low-temperature region and an increase in the absolute values of the sound velocity, which means a decrease in the adiabatic compressibility over the entire range of studied temperatures. The temperature dependence of the adiabatic compressibility is constructed at low concentrations of GndHCl. The contribution of relaxation processes to the temperature behavior of the attenuation of hypersound in solutions of GndHCl is determined. It is shown that their behavior is activated thermally and described by the Arrhenius law. The values of the activation energy of relaxation processes are calculated. Possible mechanisms that underlie the observed phenomena are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. D. Raczynska, M. K. Cyranski, M. Gutowski, J. Rak, J.-F. Gal, P.-C. Maria, M. Darowska, and K. Duczmal, J. Phys. Org. Chem. 16 (2), 91 (2003). https://doi.org/10.1002/poc.578

    Article  Google Scholar 

  2. P. J. Bailey and S. Pace, Coord. Chem. Rev. 214 (1), 91 (2001). https://doi.org/10.1016/S0010-8545(00)00389-1

    Article  Google Scholar 

  3. R. G. S. Berlinck, Nat. Prod. Rep. 16, 339 (1999). https://doi.org/10.1039/A900338J

    Article  Google Scholar 

  4. K. Gopi, B. Rathi, and N. Thirupathi, J. Chem. Sci. 122 (2), 157 (2010). https://doi.org/10.1007/s12039-010-0017-8

    Article  Google Scholar 

  5. T. Yamada, X. Liu, U. Englert, H. Yamane, and R. Dronskowski, Chem. Eur. J. 15 (23), 5651 (2009). https://doi.org/10.1002/chem.200900508

    Article  Google Scholar 

  6. M. Y. Schrier and E. E. Schrier, J. Chem. Eng. Data 22 (1), 73 (1977). https://doi.org/10.1021/je60072a009

    Article  Google Scholar 

  7. K. Kawahara and C. Tanford, J. Biol. Chem. 241 (13), 3228 (1966).

    Google Scholar 

  8. F. Hofmeister, Arch. Exp. Pathol. Pharmakol. 24, 247 (1888).

    Article  Google Scholar 

  9. S. Moelbert, B. Normand, and P. D. L. Rios, Biophys. Chem. 112 (1), 45 (2004). https://doi.org/10.1016/j.bpc.2004.06.012

    Article  Google Scholar 

  10. Y. Zhang and P. S. Cremer, Curr. Opin. Chem. Biol. 10 (6), 658 (2006). https://doi.org/10.1016/j.cbpa.2006.09.020

    Article  Google Scholar 

  11. P. E. Mason, G. W. Neilson, C. E. Dempsey, A. C. Barnes, and J. M. Cruickshank, PNAS 100 (8), 4557 (2003). https://doi.org/10.1073/pnas.0735920100

    Article  ADS  Google Scholar 

  12. E. P. O’Brien, R. I. Dima, B. Brooks, and D. Thirumalai, J. Am. Chem. Soc. 129 (23), 7346 (2007). https://doi.org/10.1021/ja069232

    Article  Google Scholar 

  13. P. E. Mason, G. W. Neilson, J. E. Enderby, M.-L. Saboungi, and C. E. Dempsey, J. Am. Chem. Soc. 126 (37), 11462 (2004). https://doi.org/10.1021/ja040034x

    Article  Google Scholar 

  14. L. S. Hibbard and A. Tulinsky, Biochemistry 17 (25), 5460 (1978). https://doi.org/10.1021/bi00618a021

    Article  Google Scholar 

  15. S. C. Mande and M. E. Sobhia, Protein Eng. 13 (2), 133 (2000). https://doi.org/10.1093/protein/13.2.133

    Article  Google Scholar 

  16. J. Dunbar, H. P. Yennawar, S. Banerjee, J. Luo, and G. K. Farber, Protein Sci. 6 (8), 1727 (1997). https://doi.org/10.1002/pro.5560060813

    Article  Google Scholar 

  17. A. Möglich, F. Krieger, and T. Kiefhaber, J. Mol. Biol. 345 (1), 153 (2005). https://doi.org/10.1016/j.jmb.2004.10.036

    Article  Google Scholar 

  18. O. Bieri, J. Wirz, B. Hellrung, M. Drewello, and T. Kiefhaber, PNAS 96 (17), 9597 (1999). https://doi.org/10.1073/pnas.96.17.9597

    Article  ADS  Google Scholar 

  19. O. Conde, J. Teixeira, and P. Papon, J. Chem. Phys. 76 (7), 3747 (1982). https://doi.org/10.1063/1.443413

    Article  ADS  Google Scholar 

  20. A. V. Svanidze, S. G. Lushnikov, and S. Kojima, JETP Lett. 90 (1), 80 (2009). https://doi.org/10.1134/S0021364009130165

    Article  ADS  Google Scholar 

  21. D. W. James and R. Appleby, J. Phys. Chem. 86 (14), 2788 (1982). https://doi.org/10.1021/j100211a045

    Article  Google Scholar 

  22. M. E. Gallina, L. Comez, S. Perticaroli, A. Morresi, A. Cesàro, O. De Giacomo, S. Di Fonzo, A. Gessini, C. Masciovecchio, L. Palmieri, M. Paolantoni, P. Sassi, and F. Scarponi, Philos. Mag. 88 (33–35), 3991 (2008). https://doi.org/10.1080/14786430802481903

    Article  ADS  Google Scholar 

  23. D. R. Lide, CRC Handbook of Chemistry and Physics, 70th ed. (CRC Press, Boca Raton, FL, 1990).

    Google Scholar 

  24. S. Boudon, G. Wipff, and B. Maigret, J. Phys. Chem. 94 (15), 6056 (1990). https://doi.org/10.1021/j100378a078

    Article  Google Scholar 

  25. F. Bencivenga, A. Cunsolo, M. Krisch, G. Monaco, L. Orsingher, G. Ruocco, F. Sette, and A. Vispa, Phys. Rev. Lett. 98 (8–23), 085501 (2007). https://doi.org/10.1103/PhysRevLett.98.085501

  26. Haruki Takayama, Tomohiko Shibata, Yuto Kuroda, Shota Koda, and Seiji Kojima, Jpn. J. Appl. Phys. 53 (7S), 07KB06 (2014). https://doi.org/10.7567/JJAP.53.07KB06

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Lushnikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedoseev, A.I., Koludarov, I.P., Fronttsek, A.V. et al. Elastic Properties of Guanidine Hydrochloride Solutions with Various Concentrations in the Gigahertz Frequency Range. Tech. Phys. 65, 1484–1490 (2020). https://doi.org/10.1134/S1063784220090170

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220090170

Navigation