Skip to main content
Log in

Detection of Cells Containing Internalized Multidomain Magnetic Iron (II, III) Oxide Nanoparticles Using the Magnetic Resonance Imaging Method

  • NANOMATERIALS IN BIOLOGY AND MEDICINE
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

This study evaluated the feasibility of using uncoated iron (II, III) oxide nanoparticles (IONP) obtained by electric explosion of wire in air for labelling living mesenchymal stromal cells and their subsequent visualization by magnetic resonance imaging (MRI) using the 1T and 1.5T clinical MRI scanners. The uptake of uncoated IONP by MSC was demonstrated for the wide range of IONP concentration in the cell culture medium. The cells did not change their proliferative activity, viability, and the set of surface markers. Iron oxide nanoparticles obtained by an electric explosion of wire in an atmosphere of air had a shape close to spherical. According to dynamic lateral light scattering, laser diffraction, and transmission electron microscopy, the particle size varied from 14 to 136 nm. Particles up to 136 nm accounted for 75%, while particles less than 36 nm accounted for 10%. A wide range of particle sizes made it possible to select MRI parameters suitable for labelled cells detection in animal tissues in both the T2 and the T1 relaxation mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. C. Villa, S. Erratico, P. Razini, F. Fiori, F. Rustichelli, Y. Torrente, and M. Belicchi, Int. J. Mol. Sci. 11 (3), 1070 (2010). https://doi.org/10.3390/ijms11031070

    Article  Google Scholar 

  2. D. J. Korchinski, M. Taha, R. Yang, N. Nathoo, and J. F. Dunn, Magn. Reson. Insights, No. 8, 15 (2015). https://doi.org/10.4137/MRI.S23557

  3. Ch. Kittel, Introduction to Solid State Physics (Wiley, New York, 1953).

    MATH  Google Scholar 

  4. A. I. Zhernovoy, Nauch. Priborostroen. 28 (2), 45 (2018).

    Article  Google Scholar 

  5. A. G. Kolhatkar, A. C. Jamison, D. Litvinov, R. C. Willson, and T. R. Lee, Int. J. Mol. Sci. 14 (8), 15977 (2013). https://doi.org/10.3390/ijms140815977

    Article  Google Scholar 

  6. N. M. Yudintceva, Y. A. Nashchekina, M. I. Blinova, L. V. Smagina, M. A. Shevtsov, and I. V. Voronkina, FEBS J. 284 (S1), 382 (2017). https://doi.org/10.1111/febs.14174

    Article  Google Scholar 

  7. Wahajuddin and S. Arora, Int. J. Nanomed. 7, 3445 (2012). https://doi.org/10.2147/IJN.S30320

    Article  Google Scholar 

  8. H. Elkhenany, M. Abd Elkodous, N. I. Ghoneim, T.  A. Ahmed, S. M. Ahmed, I. K. Mohamed, and N. El-Badri, Int. J. Biol. Macromol. 143, 763 (2019). https://doi.org/10.1016/j.ijbiomac.2019.10.031

    Article  Google Scholar 

  9. L. S. Arias, J. P. Pessan, A. P. M. Vieira, T. M. Toito de Lima, A. C. B. Delbem, and D. R. Monteiro, Antibiotics (Basel, Switz.) 7 (2), 46 (2018). https://doi.org/10.3390/antibiotics7020046

  10. A. Jordan, P. Wust, R. Scholz, B. Tesche, H. Fähling, T. Mitrovics, T. Vogl, J. Cervós-navarro, and R. Felix, Int. J. Hyperthermia 12 (6), 705 (1996). https://doi.org/10.3109/02656739609027678

    Article  Google Scholar 

  11. Q. Feng, Y. Liu, J. Huang, K. Chen, J. Huang, and K. Xiao, Sci. Rep. 8 (1), 2082 (2018). https://doi.org/10.1038/s41598-018-19628-z

    Article  ADS  Google Scholar 

  12. M. I. Lerner, Doctoral Dissertation in Engineering (Tomsk Polytech. Univ., Tomsk, 2007).

  13. M. I. Lerner, N. V. Svarovskaya, S. G. Psakhie, and O. V. Bakina, Nanotechnol. Russ. 4 (11–12), 741 (2009). https://doi.org/10.1134/S1995078009110019

    Article  Google Scholar 

  14. DelsaMax PRO Light Scattering Analyzer. Instructions for Use (Beckman Coulter, 2013), p. 188.

  15. I. Mindukshev, S. Gambaryan, L. Kehrer, C. Schuetz, A. Kobsar, N. Rukoyatkina, V. O. Nikolaev, A. Krivchenko, S. P. Watson, U. Walter, and J. Geiger, Clin. Chem. Lab. Med. 50 (7), 1253 (2012).

    Article  Google Scholar 

  16. A. A. Aisenstadt, N. I. Enukashvili, T. L. Zolina, L. V. Alexandrova, and A. B. Smoljaninov, Mechnikov Vestn. Severo-Zapad. Gos. Med. Inst. 7 (2), 14 (2015).

    Google Scholar 

  17. V. V. Bagaeva, A. A. Aizenshtadt, L. V. Aleksandrova, et. al. RF Patent No. 2620981 C2, Byull. Izobret., No. 16, 1 (2017).

  18. M. Dominici, K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, F. Marini, D. Krause, R. Deans, A. Keating, D. J. Prockop, and E. Horwitz, Cytotherapy 8 (4), 315 (2006). https://doi.org/10.1080/14653240600855905

    Article  Google Scholar 

  19. L. Li, K. Y. Mak, J. Shi, H. K. Koon, C. H. Leung, C. M. Wong, C. W. Leung, C. S. Mak, N. M. Chan, W. Zhong, K. W. Lin, E. X. Wu, and P. W. Pong, J. Nanosci. Nanotechnol. 12 (12), 9010 (2012). https://doi.org/10.1166/jnn.2012.6755

    Article  Google Scholar 

  20. R. Das, B. K. Das, R. Shukla, and A. Shyam, J. Phys.: Conf. Ser. 390 (1), 2051 (2012). https://doi.org/10.1088/1742-6596/390/1/012051

    Article  Google Scholar 

  21. Q. Li, C. W. Kartikowati, S. Horie, T. Ogi, T. Iwaki, and K. Okuyama, Sci. Rep. 7 (1), 9894 (2017). https://doi.org/10.1038/s41598-017-09897-5

    Article  ADS  Google Scholar 

  22. N. V. Abramov and P. P. Gorbik, Poverkhnost, No. 4(19), 246 (2012).

  23. U. Jeong, X. Teng, Y. Wang, H. Yang, and Y. Xia, Adv. Mater. 19 (1), 33 (2007). https://doi.org/10.1002/adma.200600674

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the staff of the Confocal Microscopy and Image Analysis Group of the Center for Cell Technologies of the Institute of Cytology of the Russian Academy of Sciences G.I. Stein and M.L. Vorob’ev for assistance in the work with an Olympus FV3000 confocal microscope (Nikon, Japan).

Funding

This work was carried out within the framework of research work (no. AAAA-A18-118052990081-0) of a state order to the Ministry of Health of the Russian Federation no. 056-00105-18-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Enukashvily.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Barkhash

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enukashvily, N.I., Kotkas, I.E., Bogolyubov, D.S. et al. Detection of Cells Containing Internalized Multidomain Magnetic Iron (II, III) Oxide Nanoparticles Using the Magnetic Resonance Imaging Method. Tech. Phys. 65, 1360–1369 (2020). https://doi.org/10.1134/S1063784220090145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220090145

Navigation