Skip to main content
Log in

Investigation of a Coaxial Plasma Jet Accelerator

  • ELECTROPHYSICS, ELECTRON AND ION BEAMS, PHYSICS OF ACCELERATORS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We report the results of an investigation of the main energy parameters of a plasma jet from a coaxial accelerator with a conical insert in the charge-formation region. We have obtained the dependences of the pressure and the jet diameter of the deuterium plasma on the distance to the accelerator, as well as on its length and the voltage polarity at the electrodes. It is shown that plasma jet energy is a quadratic function of voltage. Among all tested modifications, an accelerator with a length not exceeding 220 mm, a negative polarity of the voltage at the central electrode, and a focusing conical insert at the beginning of the outer electrode is found to be most effective. At the source output, a deuterium plasma with an ionization front velocity exceeding 100 km/s and a pressure exceeding 1 MPa is obtained. We describe a method for measuring the jet pressure with the help of a deflecting screen and an FLIR SC7300M infrared camera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. ITER Physics Basis, Nucl. Fusion 39, 2391 (1999).

    Article  ADS  Google Scholar 

  2. L. Yao, Nucl. Fusion 38, 631 (1998).

    Article  ADS  Google Scholar 

  3. V. Rozhansky, I. Senichenkov, I. Veselova, D. Morozov, and R. Schneider, Nucl. Fusion 46, 367 (2006).

    Article  ADS  Google Scholar 

  4. L. J. Perkins, S. K. Ho, and J. H. Hammer, Nucl. Fusion 28, 1365 (1988).

    Article  Google Scholar 

  5. J. Y. Park et al. (IEEE memb.), TPS0200 Special Issue on Plenary/Invited Talks from ICOPS 2003 (2004).

  6. T. P. Intrator, S. Y. Zhang, J. H. Degnan, I. Furno, C. Grabowski, S. C. Hsu, E. L. Ruden, P. G. Sanchez, J. M. Taccetti, M. Tuszewski, W. J. Waganaar, and G. A. Wurden, Phys. Plasma 11, 2580 (2004).

    Article  ADS  Google Scholar 

  7. R. Raman, F. Martin, E. Haddad, M. St-Onge, G. Abel, C. Cote, N. Richard, N. Blanchard, H. Mai, B. Quirion, J. L. la Chambre, J. L. Gauvreau, G. Pacher, R. DeCoste, P. Gierszewski, D. Hwang, A. Hirose, S.  Savoie, B. J. le Blanc, H. McLean, C. Xiao, B. Stansfield, A. Cote, D. Michaud, and M. Chartre, Nucl. Fusion 37, 967 (1997).

    Article  ADS  Google Scholar 

  8. E. M. Drobyshevsky, B. G. Zhukov, and V. A. Sakharov, IEEE. Trans. Magn. 31, 299 (1995).

    Article  ADS  Google Scholar 

  9. S. K. Combs, Rev. Sci. Instrum. 64, 1679 (1993).

    Article  ADS  Google Scholar 

  10. A. V. Voronin and K. G. Hellblom, Plasma Phys. Contr. Fusion 41, 293 (1999).

    Article  ADS  Google Scholar 

  11. V. K. Semenov and L. A. Spektorov, Sov. Tech. Phys. 9, 651 (1964).

    Google Scholar 

  12. A. V. Voronin, V. K. Gusev, Ya. A. Gerasimenko, and Yu. V. Sud’enkov, Tech. Phys. 58, 1122 (2013). https://doi.org/10.1134/2FS1063784213080264

    Article  Google Scholar 

  13. K. B. Abramova, A. V. Voronin, V. K. Gusev, E. E. Mukhin, Yu. V. Petrov, N. V. Sakharov, and F. V. Chernyshev, Plasma Phys. Rep. 31, 721 (2005).

    Article  ADS  Google Scholar 

  14. A. V. Voronin, V. K. Gusev, Yu. V. Petrov, N. V. Sakharov, K. B. Abramova, E. M. Sklyarova, and S. Yu. Tolstyakov, Nucl. Fusion 45, 1039 (2005).

    Article  ADS  Google Scholar 

  15. V. K. Gusev, F. V. Chernyshev, V. E. Golant, V. M. Leonov, R. G. Levin, V. B. Minaev, A. B. Mineev, M. I. Patrov, Yu. V. Petrov, N. V. Sakharov, S. Yu. Tolstyakov, V. I. Varfolomeev, A. V. Voronin, and E. G. Zhilin, Nucl. Fusion 46, S584 (2006).

    Article  Google Scholar 

  16. A. V. Voronin, V. K. Gusev, Yu. V. Petrov, E. E. Mukhin, S. Yu. Tolstyakov, G. S. Kurskiev, M. M. Kochergin, and K. G. Hellblom, Nukleonika 53, 103 (2008).

    Google Scholar 

  17. V. K. Gusev, R. M. Aminov, A. A. Berezutskiy, V. V. Bulanin, F. V. Chernyshev, I. N. Chugunov, A. V. Dech, V. V. Dyachenko, A. E. Ivanov, S. A. Khitrov, N. A. Khromov, G. S. Kurskiev, M. M. Larionov, A. D. Melnik, V. B. Minaev, et al., Nucl. Fusion 51, 103019 (2011).

    Article  ADS  Google Scholar 

  18. V. K. Gusev et al., Nucl. Fusion 49, 104021 (2009).

    Article  ADS  Google Scholar 

  19. A. D. Sladkomedova, A. V. Voronin, A. G. Alekseev, V. K. Gusev, G. S. Kurskiev, Yu. V. Petrov, N. V. Sakharov, S. Yu. Tolstyakov, and V. V. Zabrodsky, Phys. Scr. 93, 10560123 (2018).

    Article  Google Scholar 

  20. A. V. Voronin, V. Yu. Goryainov, V. K. Gusev, A. N. Novokhatsky, and S. A. Ponyaev, Tech. Phys. 64, 962 (2019).

    Article  Google Scholar 

  21. A. V. Voronin, V. K. Gusev, and Ya. A. Gerasimenko, Tech. Phys. 58, 462 (2013). https://doi.org/10.1134/S1063784213030250

    Article  Google Scholar 

  22. A. P. Markeev, Theoretical Mechanics, The School-Book for Higher School, 2nd ed. (CheRo, Moscow, 1999) [in Russian].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The experimental bench for testing the plasma gun was constructed and maintained by the Ioffe Physical Technical Institute.

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation, project no. 05.585.21.0007 “Perfecting the Basic Technological Systems of the KTM Tokamak, Including the Plasma Control System, Experimental Data Collection and Processing System, Working Gas Preionization System, and Diverter System.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Voronin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voronin, A.V., Goryainov, V.Y. & Gusev, V.K. Investigation of a Coaxial Plasma Jet Accelerator. Tech. Phys. 65, 987–993 (2020). https://doi.org/10.1134/S1063784220060286

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220060286

Navigation