Skip to main content
Log in

Radio Absorbing Composite Based on Square Resistive Patches

  • RADIOPHYSICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Solutions to the diffraction problems are used to calculate the effective permittivity of a composite material consisting of alternating planar arrays of square resistive patches shifted relative to each other in a dielectric layer. The relaxation character of the dispersion is demonstrated. The dispersion characteristic can be varied in wide ranges using variations in the parameters of the structure. Relative shifts of the arrays substantially affect the dispersion of permittivity of the structure. A ratio of the wavelength to the period of the structure that provides adequacy of a homogenization procedure is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. B. F. Alimin, Zarub. Radioelektron., No. 2, 75 (1989).

  2. H. T. Liu, H. F. Cheng, Z. Y. Chu, and D. Y. Zhang, Mater. Des. 28, 2166 (2007).

    Article  Google Scholar 

  3. V. V. Slutskaya, Microwave Thin Films (Gosenergoizdat, Moscow, 1962) [in Russian].

    Google Scholar 

  4. Yu. N. Kazantsev and G. A. Kraftmakher, Sov. Tech. Phys. Lett. 13, 269 (1987).

    Google Scholar 

  5. V. I. Ponomarenko, I. K. Kupriyanov, and S. I. Zhuravlev, Radiotekh. Elektron. 37, 346 (1992).

    Google Scholar 

  6. V. I. Ponomarenko, Izv. Vyssh. Uchebn. Zaved., Elektromekh., No. 5, 518 (1982).

  7. V. I. Ponomarenko, D. I. Mirovitskii, and I. F. Budagyan, Radiotekhnika 39 (11), 68 (1984).

    Google Scholar 

  8. V. I. Ponomarenko and S. I. Zhuravlev, Radiotekh. Elektron. 37, 812 (1992).

    Google Scholar 

  9. V. I. Ponomarenko, Radiotekhnika 45 (5), 82 (1990).

    Google Scholar 

  10. Yu. N. Kazantsev, V. A. Babayan, N. E. Kazantseva, O. A. D’yakonova, R. Mouchka, Ya. Vilčáková, and P. Sáha, J. Commun. Technol. Electron. 58, 233 (2013). https://doi.org/10.1134/S106422691303008X

    Article  Google Scholar 

  11. M. Yu. Zvezdina, L. V. Cherkesova, Yu. A. Shokova, G. P. Sinyavskii, D. A. Bezuglov, G. N. Shalamov, V. I. Ponomarenko, I. M. Lagunov, S. V. Sokolova, and M. I. Matveev, Composite Materials: Development and Application, Ed. M. Yu. Zvezdin (ANS SibAK, Novosibirsk, 2017) [in Russian].

    Google Scholar 

  12. A. S. Il’inskii and A. G. Sveshnikov, Prikl. Elektrodin., No. 1, 51 (1977).

  13. V. V. Nikol’skii and T. I. Nikol’skaya, Electrodynamics and Propagation of Radio Waves (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  14. V. I. Ponomarenko and I. M. Lagunov, J. Commun. Technol. Electron. 62, 765 (2017). https://doi.org/10.1134/S1064226917070087

    Article  Google Scholar 

  15. V. P. Shestopalov, L. N. Litvinenko, S. A. Masalov, and V. G. Sologub, Diffraction of Waves by Gratings (Khar’k. Univ., Khar’kov, 1973) [in Russian].

    Google Scholar 

  16. Matrix Computations, Ed. by G. H. Golub and Ch. F. van Loan, 4th ed. (Johns Hopkins Univ. Press, Baltimore, 1996).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Ponomarenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Chikishev

APPENDIX

APPENDIX

Below, we present the final formulas for calculation of the RC for a plane electromagnetic wave that is normally incident on a structure consisting of square resistive patches in a dielectric layer. The wavelength is no less than the period of the structure. We employ consecutive numbering of elementary squares (ESs) of all arrays and consecutive numbering of all modes of the equivalent waveguide. Note that the TEM mode has number n = 1.

The following notation is used.

(i) xp, yp, and zp are coordinates of the p-th ES (p = 1, 2, …, P).

(ii) Γn and Wn (n = 1, 2, …, MN) are the propagation constants and impedances for the modes of the Floquet channel at z > z0 (Fig. 2).

(iii) \(T_{n}^{ \pm }\) and \(R_{n}^{ \pm }\) are the transmission and reflection coefficients of forward (+) and backward (–) waves at the boundary z = z0 (Fig. 2).

(iv) χnx and χny are transverse wave numbers of the n-th mode.

(v) \(A_{n}^{{(y)}}\) and \(A_{n}^{{(x)}}\) are the normalized factors of electric-field components Eny and Enx of the n-th mode [13].

(vi) Snp = sin(χnxxp)sin(χnyyp).

(vii) Cnp = cos(χnxxp)cos(χnyyp).

(viii) Ψnp = \(\int_{{{\sigma }_{p}}}^{} {\cos } \)nxx)cos(χnyy)dxdy.

(ix) \({{\tilde {\Psi }}_{{np}}}\) = \(\int_{{{\sigma }_{p}}}^{} {\sin } \)nxx)cos(χnyy)dxdy,

where σp is the area of integration over surface of the p-th square.

The last integrals are easily calculated but we omit cumbersome calculated results.

(x) Cn = –Wn/(2|Wn|),

\(\beta _{{yy}}^{{p(n)}}\) = Cn|\(A_{n}^{{(y)}}\)|2Ψnp, \(\beta _{{yx}}^{{p(n)}}\) = Cn(\(A_{n}^{{(y)}}\))*\(A_{n}^{{(x)}}\)Ψnp,

\(\beta _{{xx}}^{{p(n)}}\) = Cn|\(A_{n}^{{(x)}}\)|2\({{\tilde {\Psi }}_{{np}}}\), \(\beta _{{xy}}^{{p(n)}}\) = Cn(\(A_{n}^{{(x)}}\))*\(A_{n}^{{(y)}}{{\tilde {\Psi }}_{{np}}}\).

(xi) \(E_{{nmp}}^{ \pm }\) = exp(iΓn(zm ± zp)).

(xii) αn is the reflection coefficient of the n-th mode with respect to electric field in the plane z = zk+ 1.

(xiii) \({{\tilde {S}}_{m}}\) = \(T_{1}^{ + }\)(exp(iΓ1zm) + α1exp(–iΓ1zm))/(1 – α1\(R_{1}^{ - }\)).

(xiv) Fnmp = \(R_{n}^{ - }\)[\(E_{{nmp}}^{ + }\) + αn(\(E_{{nmp}}^{ - }\) + 1/\(E_{{nmp}}^{ - }\))] + αn/\(E_{{nmp}}^{ + }\).

(xv) Snmp = exp(iΓn|zpzm|) + Fnmp/(1 – αn\(R_{n}^{ - }\)).

(xvi) \(A_{{mp}}^{{(x)}}\) = \(\sum\nolimits_n^{} {{{S}_{{nmp}}}\beta _{{xx}}^{{p(n)}}} \)Snm – δmpρ, where δmp is the Kronecker delta.

(xvii) \(A_{{mp}}^{{(y)}}\) = \(\sum\nolimits_n^{} {{{S}_{{nmp}}}\beta _{{xy}}^{{p(n)}}} \)Cnm.

(xviii) \(B_{{mp}}^{{(x)}}\) = \(\sum\nolimits_n^{} {{{S}_{{nmp}}}\beta _{{yx}}^{{p(n)}}} \)Snm.

(xix) \(B_{{mp}}^{{(y)}}\) = \(\sum\nolimits_n^{} {{{S}_{{nmp}}}\beta _{{yy}}^{{p(n)}}} \)Cnm – δmpρ.

The SLAE for surface current densities {Ipx}, {Ipy} consists of two subsystems

(xx)

$$\left\{ \begin{gathered} \sum\limits_p^{} {(A_{{mp}}^{{(x)}}{{I}_{{px}}} + B_{{mp}}^{{(x)}}{{I}_{{py}}})} = 0, \hfill \\ \sum\limits_p^{} {(A_{{mp}}^{{(y)}}{{I}_{{px}}} + B_{{mp}}^{{(y)}}{{I}_{{py}}})} = - {{{\tilde {S}}}_{m}}, \hfill \\ \end{gathered} \right.$$

(xxi)

G = \(\frac{{{{\alpha }_{1}}T_{1}^{ + }\, + \,\sum\nolimits_p^{} {({\text{exp}}(i{{\Gamma }_{1}}{{z}_{p}})\, + \,{{\alpha }_{1}}{\text{exp}}( - i{{\Gamma }_{1}}{{z}_{p}}))({{I}_{{px}}}\beta _{{xy}}^{{p(1)}}\, + \,{{I}_{{py}}}\beta _{{yy}}^{{p(1)}})} }}{{1 - {{\alpha }_{1}}R_{1}^{ - }}}\)

is the quantity that is used to represent the RC.

(xxii) R = \(R_{1}^{ + }\) + \(T_{1}^{ - }\)G is the RC with respect to electric field in the plane z = z0

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponomarenko, V.I., Lagunov, I.M. Radio Absorbing Composite Based on Square Resistive Patches. Tech. Phys. 65, 968–974 (2020). https://doi.org/10.1134/S1063784220060225

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220060225

Navigation