Skip to main content
Log in

A Study of the Protective Properties of a Combined Cermet Material upon a High-Speed Impact

  • PHYSICAL SCIENCE OF MATERIALS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The ballistic resistance of a combined cermet material based on a high-hardness ceramic bound with an intermetallide on a high-strength metal substrate, (TiB2 + NiTi) + Ti, is compared with that of plates of steel, VT1-0 titanium alloy, and Al2O3 corundum ceramics upon an impact with a steel spherical impactor in the region of velocities of about 2500 m/s. Experimental studies of protective barriers upon a high-speed impact were conducted using an experimental high-speed ballistic test bench. Mathematical modeling is based on a model of porous elastoplastic medium with allowance for various mechanisms of material destruction, which was modified for media with a complex composition. It is shown that, in the considered range of impact velocities, during penetration of barriers, the (TiB2 + NiTi) + Ti material, despite its low surface density, exerts a greater force on the impactor and exhibits greater penetration resistance than steel, titanium, and ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Jianfeng Liu, Yuan Long, Chong Ji, Qiang Liu, Mingshou Zhong, and You Zhou, Int. J. Impact Engine 112, 52 (2018).

    Article  Google Scholar 

  2. Deng Yunfei, Zhang Wei, Yang Yonggang, Shi Lizhong, and Wei Gang, Int. J. Impact Engine 70, 38 (2014).

    Article  Google Scholar 

  3. Deng Yunfei, Zhang Wei, Qing Guanghui, Wei Gang, Yang Yonggang, and Hao Peng, Mater. Des. 54, 1056 (2014).

    Article  Google Scholar 

  4. Yunfei Deng, Wei Zhang, and Zongsheng Cao, Mater. Des. 44, 228 (2013).

    Article  Google Scholar 

  5. I. E. Khorev, V. F. Tolkachev, and G. A. Erokhin, Cosmic Res. 45, 170 (2007).

    Article  ADS  Google Scholar 

  6. V. M. Zakharov, A. N. Tabachenko, and S. A. Afanas’eva, Tech. Phys. 62, 1019 (2017). https://doi.org/10.1134/S1063784217070283

    Article  Google Scholar 

  7. E. F. Dudarev, G. P. Bakach, G. P. Grabovetskaya, Yu. R. Kolobov, O. A. Kashin, and Yu. T. Zhu, Russ. Metall. (Metally), No. 1, 75 (2004).

  8. A. N. Ishchenko, S. A. Afanas’eva, V. V. Burkin, E. F. Dudarev, K. S. Rogaev, A. N. Tabachenko, and M. V. Khabibullin, Cosmic Res. 54, 438 (2016).

    Article  ADS  Google Scholar 

  9. G. I. Kanel’, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Shock Waves in Condensed Matter (Yanus-K, Moscow, 1996) [in Russian].

    Google Scholar 

  10. V. F. Tolkachev, in Proceedings of the International Conference on Natural and Mathematical Sciences: Questions and Development Trends,2016, p. 11.

  11. Minhyung Lee, Sangwon Park, Ilguk Jo, and Sangkwan Lee, Proc. Eng. 204, 100 (2017).

    Article  Google Scholar 

  12. R. Chi, A. Serjouei, I. Sridhar, and G. E. B. Tan, Int. J. Impact Engine 52, 37 (2013).

    Article  Google Scholar 

  13. M. J. Pawar, A. Patnaik, S. K. Biswas, U. Pandel, I. K. Bhat, S. Chatterjee, A. K. Mukhopadhyay, R. Banerjee, and B. P. Babu, Int. J. Impact Engine 98, 42 (2016).

    Article  Google Scholar 

  14. K. Arslan and R. Gunes, Compos. Struct. (2018, in press). https://doi.org/10.1016/j.compstruct.2018.01.087

  15. I. F. Kobylkin and V. V. Selivanov, Materials and Structures of Light Armor Protection (MGTU im. N. E. Baumana, Moscow, 2014) [in Russian].

  16. I. F. Kobylkin and A. A. Gorbatenko, Vestn. MGTU im. N. E. Baumana, Ser.: Mashinostr., No. 2 (119), 17 (2018).

  17. I. F. Kobylkin, Combust. Explos. Shock Waves 53, 483 (2017).

    Article  Google Scholar 

  18. S. D. Rajan, Lightweight Ballistic Composites, 2nd ed., Woodhead Publishing Series in Composites Science and Engineering (Woodhead, Cambridge, 2016), p. 327.

  19. A. V. Gerasimov, Izv. Tomsk. Politekh. Univ., Inzhin. Georesur. 326, 139 (2015).

    Google Scholar 

  20. L. M. Bresciani, A. Manes, T. A. Romano, P. Iavarone, and M. Giglio, Int. J. Impact Engine 87, 3 (2016).

    Article  Google Scholar 

  21. N. T. Yugov, N. N. Belov, and A. A. Yugov, State Registration Certificate of Computer Program No. 2010611042 (2010).

  22. M. V. Khabibullin and S. A. Afanas’eva, State Registration Certificate of Computer Program No. 2012617301 (2012).

  23. N. N. Belov, N. T. Yugov, S. A. Afanas’eva, A. N. Tabachenko, A. A. Konyaev, V. F. Tolkachev, and A. A. Yugov, Dokl. Phys. 50, 315 (2005).

    Article  ADS  Google Scholar 

  24. N. N. Belov, N. T. Yugov, A. N. Tabachenko, S. A. Afanas’eva, A. A. Yugov, I. N. Arkhipov, and L. S. Martsunova, Russ. Phys. J. 51, 671 (2008).

    Article  Google Scholar 

  25. A. N. Tabachenko and G. G. Kryuchkova, Inzh. Fiz. Zh. NAN Belarusi 65, 492 (1993).

    Google Scholar 

  26. A. N. Tabachenko, L. A. Martsunova, A. B. Skosyrskii, N. N. Belov, N. T. Yugov, and S. A. Afanas’eva, Theor. Found. Chem. Eng. 44, 723 (2010).

    Article  Google Scholar 

  27. A. G. Merzhanov, Physical Chemistry, Modern Problems (Khimiya, Moscow, 1983), p. 6 [in Russian].

    Google Scholar 

  28. V. V. Burkin, A. N. Tabachenko, S. A. Afanas’eva, A. N. Ishchenko, A. Yu. Sammel’, A. B. Skosyrskii, and A. V. Chupashev, Tech. Phys. Lett. 44, 344 (2018).

    Article  ADS  Google Scholar 

  29. A. N. Ishchenko, A. N. Tabachenko, R. N. Akinshin, S. A. Afanas’eva, N. N. Belov, I. L. Borisenkov, V. V. Burkin, A. B. Skosyrskii, M. V. Khabibullin, A. V. Chupashev, and N. T. Yugov, Tech. Phys. 63, 988 (2018). https://doi.org/10.21883/JTF.2018.07.46170.2556

    Article  Google Scholar 

  30. V. A. Burakov, V. V. Burkin, A. N. Ishchenko, L. V. Korol’kov, E. Yu. Stepanov, A. V. Chupashev, S.  V. Agafonov, and K. S. Rogaev, RF Patent No. 2591132 (2016).

  31. N. N. Belov, V. N. Demidov, L. V. Efremova, A. V. Zhu-kov, A. P. Nikolaev, V. G. Simonenko, V. G. Trushkov, M. V. Khabibullin, I. E. Shipovskii, and V. B. Shutalev, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 8, 5 (1992).

  32. V. V. Burkin, A. S. D’yachkovskii, L. V. Korol’kov, A. L. Egorov, I. V. Maistrenko, E. Yu. Stepanov, A.  V.  Chupashev, and K. S. Rogaev, RF Patent No. 161396, Request No. 2015127042 (2015).

Download references

Funding

In this work, we used the results obtained within the “Program for Improving the Competitiveness of Tomsk National Research University,” project no. 8.2.09.2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Afanas’eva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishchenko, A.N., Afanas’eva, S.A., Belov, N.N. et al. A Study of the Protective Properties of a Combined Cermet Material upon a High-Speed Impact. Tech. Phys. 65, 925–934 (2020). https://doi.org/10.1134/S1063784220060134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220060134

Navigation