Skip to main content
Log in

Examination of the Capabilities of Metalorganic Vapor-Phase Epitaxy in Fabrication of Thin InAs/GaSb Layers

  • PHYSICS OF NANOSTRUCTURES
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The capabilities of metalorganic vapor-phase epitaxy (MOVPE) in fabrication of structures with thin (1–2 nm) alternating InAs/GaSb layers on a GaSb substrate are studied. The characteristics of these structures were examined using transmission electron microscopy and methods of photo- and electroluminescence. It was found that two GaInAsSb solid solutions of different compositions were formed in the active regions of structures in the given growth conditions. The fabricated system was characterized by an emission wavelength of 4.96 μm at a temperature of 77 K. The results reveal new opportunities for bandgap engineering of semiconductor structures based on InAs/GaSb, which are designed for optoelectronic devices operating in the infrared range, provided by MOVPE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. D. L. Smith and C. Mailhiot, J. Appl. Phys. 62, 2545 (1987).

    Article  ADS  Google Scholar 

  2. E. R. Youngdale, J. R. Meyer, C. A. Hoffman, F. J. Bartoli, C. H. Grein, P. M. Young, H. Ehrenreich, R. H. Miles, and D. H. Chow, Appl. Phys. Lett. 64, 3160 (1994).

    Article  ADS  Google Scholar 

  3. G. G. Zegrya and A. D. Andreev, Appl. Phys. Lett. 67, 2681 (1995).

    Article  ADS  Google Scholar 

  4. Z.-D. Ning, S.-M. Liu, S. Luo, F. Ren, F. Wang, T. Yang, F.-Q. Liu, Z.-G. Wang, and L.-C. Zhao, Mater. Lett. 164, 213 (2016). https://doi.org/10.1016/j.matlet.2015.10.140

    Article  Google Scholar 

  5. J. A. Keen, E. Repiso, Q. Lu, M. Kesaria, A. R. J. Marshall, A. Krier, Infrared Phys. Technol 93, 375 (2018). https://doi.org/10.1016/j.infrared.2018.08.001

    Article  ADS  Google Scholar 

  6. K. D. Mynbaev, A. V. Shilyaev, A. A. Semakova, E. V. Bykhanova, and N. L. Bazhenov, Opto-Electron. Rev. 25, 209 (2017). https://doi.org/10.1016/j.opelre.2017.06.005

    Article  ADS  Google Scholar 

  7. J. Wu, Z. Xu, J. Chen, and L. He, Infrared Phys. Technol. 92, 18 (2018). https://doi.org/10.1016/j.infrared.2018.05.004

    Article  ADS  Google Scholar 

  8. C. Cervera, I. Ribet-Mohamed, R. Taalat, J. P. Perez, P. Christol, and J. B. Rodriguez, J. Electron. Mater. 41, 2714 (2012). https://doi.org/10.1007/s11664-012-2035-4

    Article  ADS  Google Scholar 

  9. N. Gautam, H. S. Kim, M. N. Kutty, E. Plis, L. R. Dawson, and S. Krishna, Appl. Phys. Lett. 96, 231107 (2010). https://doi.org/10.1063/1.3446967

    Article  ADS  Google Scholar 

  10. Y. Wei, A. Gin, M. Razeghi, and G. J. Brown, Appl. Phys. Lett. 80, 3262 (2002).

    Article  ADS  Google Scholar 

  11. A. Rogalski, P. Martyniuk, and M. Kopytko, Appl. Phys. Rev 2, 031304 (2017). https://doi.org/10.1063/1.4999077

    Article  Google Scholar 

  12. D. Jung, S. Bank, M. L. Lee, and D. Wasserman, J. Opt. 19, 123001 (2017). https://doi.org/10.1088/2040-8986/aa939b

    Article  ADS  Google Scholar 

  13. X. Li, Y. Zhao, Q. Wu, Y. Teng, X. Hao, and Y. Huang, J. Cryst. Growth 502, 71 (2018). https://doi.org/10.1016/j.jcrysgro.2018.09.003

    Article  ADS  Google Scholar 

  14. Y. Huang, J.-H. Ryou, R. D. Dupuis, V. R. D’Costa, E. H. Steenbergen, J. Fan, Y.-H. Zhang, A. Petschke, M. Mandl, and S.-L. Chuang, J. Cryst. Growth 314, 92 (2011). https://doi.org/10.1016/j.jcrysgro.2010.11.003

    Article  ADS  Google Scholar 

  15. Y. Huang, J.-H. Ryou, R. D. Dupuis, A. Petschke, M. Mandl, and S.-L. Chuang, Appl. Phys. Lett. 96, 251107 (2010). https://doi.org/10.1063/1.3456386

    Article  ADS  Google Scholar 

  16. Y. Huang, J.-H. Ryou, R. D. Dupuis, D. Zuo, B. Kesler, S.-L. Chuang, H. Hu, K.-H. Kim, Y. T. Lu, K. C. Hsieh, and J.-M. Zuo, Appl. Phys. Lett. 99, 011109 (2011). https://doi.org/10.1063/1.3609240

    Article  ADS  Google Scholar 

  17. Y. Chang, T. Wang, F. Yin, J. Wang, Z. Song, Y. Wang, and J. Yin, Infrared Phys. Technol. 54, 478 (2011). https://doi.org/10.1016/j.infrared.2011.07.009

    Article  ADS  Google Scholar 

  18. P. Barletta, G. Bulman, G. Dezsi, and R. Venkatasubramanian, Thin Solid Films 520, 2170 (2012). https://doi.org/10.1016/j.tsf.2011.10.007

    Article  ADS  Google Scholar 

  19. L.-G. Li, S.-M. Liu, S. Luo, T. Yang, L.-J. Wang, F.-Q. Liu, X.-L. Ye, B. Xu, and Z.-G. Wang, Nanoscale Res. Lett. 7, 160 (2012). https://doi.org/10.1186/1556-276X-7-160

    Article  ADS  Google Scholar 

  20. L.-G. Li,  S.-M. Liu,  S. Luo,  T. Yang,  L.-J. Wang, J.-Q. Liu, F.-Q. Liu, X.-L. Ye, and B. Xu, J. Cryst. Growth 359, 55 (2012). https://doi.org/10.1016/j.jcrysgro.2012.08.009

    Article  ADS  Google Scholar 

  21. R. V. Levin, A. A. Usikova, V. N. Nevedomskii, N. L. Bazhenov, K. D. Mynbaev, B. V. Pushnyi, and G. G. Zegrya, Proc. XXV Int. Scientific and Technical Conf. on Photoelectronics and Night Vision Devices, Moscow, Russia, 2018, Vol. 1, p. 247.

  22. V. M. Andreev, R. V. Levin, and B. V. Pushnyi, RF Patent No. 2611692 (2017).

  23. R. Taalat, J. Rodriguez, M. Delmas, and Ph. Christol, J. Phys. D: Appl. Phys. 47, 015101 (2014). https://doi.org/10.1088/0022-3727/47/1/015101

    Article  ADS  Google Scholar 

  24. P. Christol, M. Delmas, R. Rossignol, and J. B. Rodriguez, Phys. Chem. Biophys. 5, 1000197 (2015). https://doi.org/10.4172/2161-0398.1000197

    Article  Google Scholar 

  25. M. J. Bevan and K. T. Woodhouse, J. Cryst. Growth 68, 254 (1984).

    Article  ADS  Google Scholar 

  26. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).

    Article  ADS  Google Scholar 

  27. K. D. Mynbaev, N. L. Bazhenov, A. A. Semakova, A. V. Chernyaev, S. S. Kizhaev, N. D. Stoyanov, V. E. Bougrov, H. Lipsanen, and Kh. M. Salikhov, Infrared Phys. Technol. 85, 246 (2017). https://doi.org/10.1016/j.infrared.2017.07.003

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to thank M.A. Yagovkina for her help in XRD measurements. TEM studies were conducted on equipment provided by the federal common use center “Materials Science and Diagnostics in Advanced Technology” supported by the Ministry of Science and Higher Education of the Russian Federation (project identifier RFMEFI62117X0018).

Funding

This study was supported in part by the Russian Foundation for Basic Research, grant no. 16-08-01130-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Levin.

Ethics declarations

The authors declare that they do not have any conflicts of interest.

Additional information

Translated by D. Safin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levin, R.V., Pushnyi, B.V., Fedorov, I.V. et al. Examination of the Capabilities of Metalorganic Vapor-Phase Epitaxy in Fabrication of Thin InAs/GaSb Layers. Tech. Phys. 64, 1509–1514 (2019). https://doi.org/10.1134/S106378421910013X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378421910013X

Navigation