Skip to main content
Log in

A Lightweight Flexible Solar Cell Based on a Heteroepitaxial InGaP/GaAs Structure

  • SOLID STATE ELECTRONICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Problems arising in fabrication of lightweight flexible solar cells based on heteroepitaxial AIIIBV structures with substrate etching are discussed. Possible solutions are proposed. A tandem lightweight flexible solar cell based on a heteroepitaxial InGaP/GaAs structure was fabricated. Its mass and dimensional characteristics were determined, and bending tests were performed. The specific mass of this solar cell was 0.51 kg/m2, and the allowable bend radius was 36 mm. Its current–voltage curves were measured for the AM0 and AM1.5D spectra at 28.6°C and 25°C, respectively. The cell efficiency was found to be 23.1% and 28.3%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. D. Shahrjerdi, S. W. Bedell, C. Bayram, C. C. Lubguban, K. Fogel, P. Lauro, J. A. Ott, M. Hopstaken, M. Gayness, and D. Sadana, Adv. Energy Mater. 3, 566 (2012). https://doi.org/10.1002/aenm.201200827

    Article  Google Scholar 

  2. G. F. X. Strobl, L. Ebel, D. Fuhrmann, W. Guter, R. Kern, V. Khorenko, W. Kostler, and M. Meusel, in Proc. 40th IEEE Photovoltaic Specialist Conf., Denver, United States, 2014, p. 3595. https://doi.org/10.1109/PVSC.2014.6924884

  3. N. A. Pakhanov, V. M. Andreev, M. Z. Shvarts, and O. P. Pchelyakov, Optoelectron., Instrum. Data Process. 54, 187 (2018). https://doi.org/10.3103/S8756699018020115

    Article  ADS  Google Scholar 

  4. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, Prog. Photovoltaics: Res. Appl. 25, 3 (2016). https://doi.org/10.1002/pip.2855

    Article  Google Scholar 

  5. M. A. Green, Prog. Photovoltaics: Res. Appl. 25, 333 (2017). https://doi.org/10.1002/pip.2876

    Article  Google Scholar 

  6. N. Pan, in Proc. IEEE Int. Conf. on Semiconductor Electronics, Kuala Lumpur, Malaysia, 2014, p. 347. https://doi.org/10.1109/SMELEC.2014.6920869

  7. E. Yablonovitch, T. Gmitter, J. P. Harbison, and R. Bhat, Appl. Phys. Lett. 51, 2222 (1987). https://doi.org/10.1063/1.98946

    Article  ADS  Google Scholar 

  8. M. M. A. J. Voncken, J. J. Schermer, A. T. J. van Niftrik, G. J. Bauhuis, P. Mulder, P. K. Larsen, T. P. J. Peters, B. de Bruin, A. Klaassen, and J. J. Kelly, J. Electrochem. Soc. 151, G347 (2004). https://doi.org/10.1149/1.1690293

    Article  Google Scholar 

  9. K. Lee, J. D. Zimmerman, X. Xiao, K. Sun, and S. R. Forrest, J. Appl. Phys. 111, 033527 (2012). https://doi.org/10.1063/1.3684555

    Article  ADS  Google Scholar 

  10. C. Zhang, D. Lubyshev, T. N. Jackson, D. L. Miller, and T. S. Mayer, J. Electrochem. Soc. 146, 1597 (1999). https://doi.org/10.1149/1.1391811

    Article  Google Scholar 

  11. D. Arslan, A. Dehe, and H. L. Hartnagel, J. Vac. Sci. Technol. B 17, 784 (1999). https://doi.org/10.1116/1.590640

    Article  Google Scholar 

  12. P. D. Moran, D. M. Hansen, R. J. Matyi, J. M. Redwing, and T. F. Kuecha, J. Electrochem. Soc. 146, 3506 (1999). https://doi.org/10.1149/1.1392505

    Article  Google Scholar 

  13. A. R. Clawson, Mater. Sci. Eng. R 31, 1 (2001). https://doi.org/10.1016/S0927-796X(00)00027-9

    Article  Google Scholar 

  14. Solar Cells and Their Applications, Ed. by L. Fraas and L. Partain (Wiley, Hoboken, 2010).

    Google Scholar 

  15. M. Wanlass, R. K. Ahrenkiel, D. S. Albin, M. W. J. Car Wanlass, A. Duda, K. Emery, D. Friedman, J. F. Geisz, K. M. Jones, A. E. Kibbler, J. Kiel, S. Kurtz, W. E. McMahon, T. Moriarty, J. M. Olson, and A. J. Ptak, in Proc. 4th World Conf. on Photovoltaic Energy Conversion, Waikoloa, United States, 2006, p. 729. https://doi.org/10.1109/WCPEC.2006.279559

  16. P. Patel, D. Aiken, A. Boca, B. Cho, D. Chumney, M. B. Clevenger, A. Cornfeld, N. Fatemi, Y. Lin, J. McCarty, F. Newman, P. Sharps, J. Spann, M. Stan, J. Steinfeldt, et al., IEEE J. Photovoltaics 2, 377 (2012). https://doi.org/10.1109/JPHOTOV.2012.2198048

    Article  Google Scholar 

  17. Physical Quantities. Handbook, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991).

    Google Scholar 

  18. M. E. Drits, P. B. Budberg, G. S. Burkhanov, A. M. Drits, and V. M. Panovko, Properties of Elements. Handbook (Metallurgiya, Moscow, 1985).

    Google Scholar 

  19. A. V. Bobylev, Mechanical and Technological Properties of Metals, 2nd ed. (Metallurgiya, Moscow, 1987).

    Google Scholar 

  20. J. S. Blakemore, J. Appl. Phys. 53, R123 (1982). https://doi.org/10.1063/1.331665

    Article  ADS  Google Scholar 

  21. K. A. Bertness, S. R. Kurtz, D. J. Friedman, A. E. Kibbler, C. Kramer, and J. M. Olson, Appl. Phys. Lett. 65, 989 (1994). https://doi.org/10.1063/1.112171

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by SP-749.2016.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Putyato.

Additional information

Translated by D. Safin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Putyato, M.A., Valisheva, N.A., Petrushkov, M.O. et al. A Lightweight Flexible Solar Cell Based on a Heteroepitaxial InGaP/GaAs Structure. Tech. Phys. 64, 1010–1016 (2019). https://doi.org/10.1134/S106378421907020X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378421907020X

Navigation