Skip to main content
Log in

Barodiffusion in Slow Flows of a Gas Mixture

  • GASES AND LIQUIDS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Barodiffusion in slow flows of a gas mixture is studied with an approximation using hydrodynamic equations of motion for the individual mixture components. It is shown that consideration of the viscous momentum transfer and the contribution of Knudsen layers for the mixture flowing in a channel has a considerable effect on the value of the barodiffusion factor. The relations are obtained for the mean diffusion fluxes of components and for the total flux of the mixture in a circular cylindrical capillary; these relations are valid for moderately small Knudsen numbers used for calculation of the diffusion baroeffect and separation effect when the gas mixture flows in a set of capillaries connecting two volumes. The modification of the relations for the barodiffusion factor (and for the diffusion slip coefficient cross-linked with it) allows interpreting the sign alteration of these effects observed experimentally for some gas mixtures at intermediate Knudsen numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. S. Chapman and T. G. Cowling, The Mathematical Theory of Non-uniform Gases (Cambridge Univ. Press, 1970).

    MATH  Google Scholar 

  2. L. D. Landau and E. M. Lifshitz Fluid Mechanics (Nauka, Moscow, 1986).

    Google Scholar 

  3. V. Zhdanov, Yu. Kagan, and A. Sazykin, J. Exp. Theor. Phys. 15, 596 (1962).

    Google Scholar 

  4. E. P. Potanin, Zh. Tekh. Fiz. 53, 1777 (1983).

    Google Scholar 

  5. I. Shaposhnikov and Z. Gol’dberg, Zh. Eksp. Teor. Fiz. 23, 425 (1952).

    Google Scholar 

  6. A. M. Dykhne, A. F. Pal’, V. D. Pis’mennyi, V. V. Pichugin, A. N. Starostin, and M. D. Taran, J. Exp. Theor. Phys. 61, 1171 (1985).

    Google Scholar 

  7. S. P. D’yakov, Zh. Eksp. Teor. Fiz. 27, 283 (1954).

    MathSciNet  Google Scholar 

  8. V. D. Borisevich, V. D. Borman, G. A. Sulaberidze, A. V. Tikhomirov, and V. I. Tokmantsev, Physical Principles of Gas-Mixture Separation in a Gas Centrifuge (MEI, Moscow, 2011).

    Google Scholar 

  9. V. M. Zhdanov, A. I. Karchevskii, E. P. Potanin, and A. L. Ustinov, Zh. Tekh. Fiz. 49, 1879 (1979).

    Google Scholar 

  10. V. M. Zhdanov, Zh. Tekh. Fiz. 37, 192 (1967).

    Google Scholar 

  11. J. P. Breton, Phys. A 50, 365 (1970).

    ADS  Google Scholar 

  12. V. M. Zhdanov, Adv. Colloid Interface Sci. 66, 1 (1996).

    Article  Google Scholar 

  13. S. Villani, Uranium Enrichment (Springer, 1976).

    Google Scholar 

  14. Isotopes: Properties, Synthesis, Applications Ed. by V. Yu. Baranov (Fizmatlit, Moscow, 2005), Vol. 1.

    Google Scholar 

  15. L. Waldmann and K. H. Schmitt, Z. Naturforsch. A 16, 1343 (1961).

    Article  ADS  Google Scholar 

  16. P. E. Suetin and P. V. Volobuev, Zh. Tekh. Fiz. 34, 1107 (1964).

    Google Scholar 

  17. S. Pan and T. S. Storvik, J. Chem. Phys. 97, 2671 (1992).

    Article  ADS  Google Scholar 

  18. S. R. de Groot, and P. Mazur, Non-Equilibrium Thermodynamics (North-Holland, Amsterdam, 1962).

    MATH  Google Scholar 

  19. H. Grad, Commun. Pure Appl. Math. 2, 331 (1949).

    Article  Google Scholar 

  20. M. H. Johnson, Phys. Rev. 82, 298 (1951).

    Google Scholar 

  21. V. M. Zhdanov, Transport Phenomena in Multicomponent Plasma (Energoizdat, Moscow, 1982).

    Google Scholar 

  22. D. A. Frank-Kamenetskii, Introduction to Macrokinetics. Diffusion and Heat Transfer in Chemical Kinetics, 4th ed. (Intellekt, Dolgoprudnyi, 2008).

  23. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).

    MATH  Google Scholar 

  24. E. P. Potanin, Zh. Tekh. Fiz. 54, 803 (1984).

    Google Scholar 

  25. V. M. Zhdanov and G. A. Tirskiy, J. Appl. Math. Mech. 71, 718 (2007).

    Article  Google Scholar 

  26. V. M. Zhdanov and V. A. Zaznoba, J. Appl. Math. Mech. 45, 801 (1981).

    Article  Google Scholar 

  27. V. M. Zhdanov, J. Appl. Mech. Tech. Phys. 23, 201 (1982).

    Article  ADS  Google Scholar 

  28. V. M. Zhdanov, Phys. Rev. E 95, 033106 (2017).

    Article  ADS  Google Scholar 

  29. S. K. Loyalka, Phys. Fluids 14, 2599 (1971).

    Article  ADS  Google Scholar 

  30. I. N. Ivchenko, S. K. Loyalka, and R. V. Tompson, J. Vac. Sci. Technol. A 15, 2375 (1997).

    Article  ADS  Google Scholar 

  31. E. H. Kennard, Kinetic Theory of Gases (McGraw–Hill, New York, 1938).

    Google Scholar 

  32. L. H. Shendalman, J. Chem. Phys. 51, 2483 (1969).

    Article  ADS  Google Scholar 

  33. I. D. Pochuev, V. D. Seleznev, and P. E. Suetin, J. Appl. Mech. Tech. Phys. 15, 613 (1974).

    Article  ADS  Google Scholar 

  34. V. G. Chernyak, J. Appl. Mech. Tech. Phys. 23, 638 (1982).

    Article  ADS  Google Scholar 

  35. F. Sharipov and D. Kalempa, J. Vac. Sci. Technol. A 20, 814 (2002).

    Article  ADS  Google Scholar 

  36. H. Lang and K. Eger, Z. Phys. Chem. Neue Folge 68, 130 (1969).

    Article  Google Scholar 

  37. F. J. McCormack, Phys. Fluids 16, 2095 (1973).

    Article  ADS  Google Scholar 

  38. J. A. W. Huggil, Proc. R. Soc. A 212, 123 (1952).

    Article  ADS  Google Scholar 

  39. V. D. Seleznev, P. E. Suetin, and N. A. Smirnov, Zh. Tekh. Fiz. 45, 1499 (1975).

    Google Scholar 

  40. D. E. Fain, W. K. Brown, Proc. 10th Int. Symp. on Rarefied Gas Dynamics, Aspen, United States, 1976, Ed. by J. L. Potter (Plenum, New York, 1976), Vol. 1, p. 65.

  41. V. Selesnev, B. Porodnov, V. Akinshin, V. Surguchev, and A. Tarin, in Rarefied Gas Dynamics, Ed. by O. M. Belotserkovskii, M. N. Kogan, S. S. Kutateladze, and A. K. Rebrov (Plenum, New York, 1985), Vol. 2, p. 1341.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks Yu. Kagan for fruitful discussions and V.A. Zaznoba for the performed calculations.

Funding

The study is supported by the Russian Foundation for Basic Research (project no. 18-08-00211) and by by National Research Nuclear University MEPhI within the framework of the Russian Academic Excellence Project (contract no. 02.a03.21.0005, August 27, 2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Zhdanov.

Additional information

Translated by E. Oborin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhdanov, V.M. Barodiffusion in Slow Flows of a Gas Mixture. Tech. Phys. 64, 596–605 (2019). https://doi.org/10.1134/S106378421905027X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378421905027X

Navigation