Skip to main content
Log in

Laser-Induced Superintensive Bubble Boiling

  • GASES AND LIQUIDS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Superintensive bubble boiling (SBB) is implemented in water in the absence of degassing at the end surface of a laser fiber using 100-ns laser pulses. A thulium fiber laser with a radiation wavelength of 1.94 μm and moderate power is used as a radiation source. The generation of bubble microjets in the vicinity of the end surface of the laser fiber is studied with the aid of high-speed photography and acoustic methods. After a threshold transition to the SBB regime, the energy of acoustic emission is predominantly concentrated in an acoustic interval of 10–30 kHz. The acoustic signal is generated due to thermal cavitation. Record-high thermal fluxes of up to 0.16 MW/cm2 are reached in the SBB regime. Parameters of the resulting convective fluxes, microbubbles, and broadband acoustic oscillations are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. S. A. Zhukov, S. Yu. Afanas’ev, and S. B. Echmaev, Int. J. Heat Mass Transfer 46, 3411 (2003).

    Article  Google Scholar 

  2. S. Kumagai, K. Kawabata, T. Katagari, and R. Shimada, in Proc. 11th Int. Heat Transfer Conf., Kyongju, 1998, Vol. 2, p. 279.

  3. S. Kumagai, T. Uhara, T. Nakata, and M. Izumi, in Proc. 5th ASME/JSME Joint Eng. Conf., San Diego, 1999, p. 99–6430.

  4. Y. A. Zeigarnik, D. N. Platonov, K. A. Khodakov, and Y. L. Shekhter, High Temp. 49, 566 (2011).

    Article  Google Scholar 

  5. V. M. Chudnovskii, V. I. Yusupov, S. A. Zhukov, S. B. Echmaev, and V. N. Bagratashvili, Dokl. Phys. 62, 174 (2017).

    Article  ADS  Google Scholar 

  6. V. M. Chudnovskii, V. I. Yusupov, A. V. Dydykin, V. I. Nevozhai, A. Yu. Kisilev, S. A. Zhukov, and V. N. Bagratashvili, Quantum Electron. 47, 361 (2017).

    Article  ADS  Google Scholar 

  7. R. Deng, Y. He, Y. Qin, Q. Chen, and L. Chen, Yaogan Xuebao—J. Remote Sens. 16, 192 (2012).

    Google Scholar 

  8. S. F. Rastopov and A. T. Sukhodolsky, Proc. SPIE 1440, 127 (1991).

    Article  ADS  Google Scholar 

  9. P. Gregorcic, M. Jezersek, and J. Mozina, J. Biomed. Opt. 17, 075006 (2012).

    Article  ADS  Google Scholar 

  10. V. I. Yusupov, A. N. Konovalov, V. A. Ul’yanov, and V. N. Bagratashvili, Acoust. Phys. 62, 537 (2016).

    Article  ADS  Google Scholar 

  11. A. V. Bulanov, I. G. Nagornyi, and E. V. Sosedko, Tech. Phys. 58, 1201 (2013).

    Article  Google Scholar 

  12. B. R. Novak, E. J. Maginn, and M. J. McCready, Phys. Rev. B 75, 085413 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Yusupov.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yusupov, V.I., Chudnovskii, V.M. & Bagratashvili, V.N. Laser-Induced Superintensive Bubble Boiling. Tech. Phys. 64, 24–26 (2019). https://doi.org/10.1134/S1063784219010250

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784219010250

Navigation