Skip to main content
Log in

Electric Properties of Nanocomposite Films Based on Amorphous Hydrogenated Carbon

  • PHYSICAL SCIENCE OF MATERIALS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We report on the investigation results of electric properties of amorphous hydrogenated carbon with nickel nanoparticles, a-C : H(Ni) on glassceramic substrates. The films are synthesized by reactive ion-plasma magnetron sputtering. The analysis results of the effect of nickel (Ni) concentration in dc conductivity σ and the values of complex permittivity ε* in the frequency range 8–12 GHz are considered. The real part ε' of the complex permittivity of samples reaches 100, while the imaginary part ε'' attains 212. The nickel concentration in the films corresponding to the percolation threshold amounts to 22–25 at %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. J. Robertson, Mater. Sci. Eng. R 37, 129 (2002).

    Article  Google Scholar 

  2. P. Koidl, C. Wild, B. Dischler, J. Wagner, and M. Ramsteiner, Mater. Sci. Forum 5253, 41 (1990). doi 10.4028/www.scientific.net/MSF.52-53.41

  3. J. W. Zou, K. Reichelt, K. Schmidt, and B. Dischler, J. Appl. Phys. 65, 3914 (1989). doi 10.1063/1.343355

    Article  ADS  Google Scholar 

  4. S. Kaplan, F. Jansen, and M. Machonkin, Appl. Phys. Lett. 47, 750 (1985). doi 10.1063/1.96027

    Article  ADS  Google Scholar 

  5. A. Grill, B. S. Meyerson, V. V. Patel, A. Reimer, and M. A. Petrich, J. Appl. Phys. 61, 2874 (1987). doi 10.1063/1.337883

    Article  ADS  Google Scholar 

  6. V. I. Ivanov-Omskii, A. V. Tolmatchev, and S. G. Yastrebov, Semiconductors 35, 220 (2001). doi 10.1134/1.1349936

    Article  ADS  Google Scholar 

  7. C. Jäger, J. Gottwald, H. W. Spiess, and R. J. Newport, Phys. Rev. B 50, 846 (1994). doi 10.1103/PhysRevB.50.846

    Article  ADS  Google Scholar 

  8. J. Robertson and E. P. O’Reilly, Phys. Rev. B 35, 2946 (1987). doi 10.1103/PhysRevB.35.2946

    Article  ADS  Google Scholar 

  9. A. V. Vasin, L. A. Matveeva, and A. M. Kutsai, Tech. Phys. Lett. 25, 1006 (1999). doi 10.1134/1.1262714

    Article  ADS  Google Scholar 

  10. A. Khurshudov, K. Kato, and S. Daisuke, J. Vac. Sci. Technol. A 14, 2935 (1996). doi 10.1116/1.580247

    Article  ADS  Google Scholar 

  11. Q. Wei, R. J. Narayan, A. K. Sharma, J. Sankar, and J. Narayan, J. Vac. Sci. Technol. A 17, 3406 (1999). doi 10.1116/1.582074

    Article  ADS  Google Scholar 

  12. H. Dimigen and C. P. Klages, Surf. Coat. Technol. 49, 543 (1991). doi 10.1016/0257-8972(91)90114-C

    Article  Google Scholar 

  13. X. M. He, M. Hakovirta, and M. Nastasi, Mater. Lett. 59, 1417 (2005). doi 10.1016/j.matlet.2004.11.059

    Article  Google Scholar 

  14. J. C. Damasceno, S. S. Camargo, F. L. Freire, and R. Carius, Surf. Coat. Technol. 133134, 247 (2000). doi 10.1016/S0257-8972(00)00932-4

  15. R. Gampp, P. Gantenbein, Y. Kuster, P. Reimann, R. Steiner, P. Oelhafen, S. Brunold, U. Frei, A. Gombert, R. Joerger, W. Graf, and M. Koehl, Proc. SPIE 2255, 92 (1994). doi 10.1117/12.185360

    Article  ADS  Google Scholar 

  16. C. Donnet, J. Fontaine, A. Grill, V. Patel, C. Jahnes, and M. Belin, Surf. Coat. Technol. 9495, 531 (1997). doi 10.1016/S0257-8972(97)00462-3

  17. M. Grischke, K. Bewilogua, K. Trojan, and H. Dimigen, Surf. Coat. Technol. 7475, 739 (1996). doi 10.1016/0257-8972(94)08201-4

  18. Q. Wei, J. Sankar, and J. Narayan, Surf. Coat. Technol. 146147, 250 (2001). doi 10.1016/S0257-8972(01)01394-9

  19. L. V. Lutsev, T. K. Zvonareva, and V. M. Lebedev, Tech. Phys. Lett. 27, 659 (2001). doi 10.1134/1.1398960

    Article  ADS  Google Scholar 

  20. L. V. Lutsev, S. V. Yakovlev, and V. I. Siklitskii, Phys. Solid State 42, 1139 (2000). doi 10.1134/1.1131330

    Article  ADS  Google Scholar 

  21. O. Yu. Moroz and E. Yu. Nakvasina, Proc. XII All-Russian School-Seminar “Wave Phenomena in Inhomogeneous Media,” Zvenigorod, Russia, 2010, Vol. 7, p. 57.

  22. G. A. Nikolaychuk, S. V. Yakovlev, O. Y. Moroz, and E. Y. Nakvasina, Proc. 13th Int. Conf. on Electromechanics, Electrotechnology, Electromaterials and Components, Alushta, Ukraine, 2010, Vol. 4, p. 46.

  23. G. A. Nikolaychuk, S. V. Yakovlev, L. V. Lutsev, V. V. Petrov, O. Y. Moroz, E. A. Tsvetkova, E. Yu. Nakvasina, and S. A. Trifonov, Proc. 18th Int. Crimean Conf.—Microwave & Telecommunication Technology, Sevastopol, Ukraine, 2008, p. 579. doi 10.1109/CRMICO.2008.4676511

  24. A. L. Efros, Physics and Geometry of Disorder (Nauka, Moscow, 1982).

    Google Scholar 

  25. V. I. Smirnov, Nondestructive Methods for Monitoring the Parameters of Semiconductor Materials and Structures (Ul’yanovsk. Gos. Tekh. Univ., Ul’yanovsk, 2012).

  26. J. Baker-Jarvis, Transmission/Reflection and Short-Circuit Line Permittivity Measurements (National Institute of Standards and Technology, Colorado, 1990).

    Google Scholar 

  27. A. M. Nicholson and G. F. Ross, IEEE Trans. Instrum. Meas. 4, 377 (1970). doi 10.1109/TIM.1970.4313932

    Article  Google Scholar 

  28. W. B. Weir, Proc. IEEE 62, 33 (1974). doi 10.1109/PROC.1974.9382

    Article  Google Scholar 

  29. P. G. Bartley and S. B. Begley, Proc. IEEE Instrumentation & Measurement Technology Conf., Austin, United States, 2010, p. 54. doi 10.1109/IMTC.2010.5488184

  30. I. S. Kovalev, Strip-Line Device Engineering (Sov. Radio, Moscow, 1974).

    Google Scholar 

  31. A. K. Jonscher, J. Phys. D 32, R57 (1999). doi 10.1088/0022-3727/32/14/201

    Article  ADS  Google Scholar 

  32. V. I. Ivanov-Omskii and G. S. Frolova, Tech. Phys. 40, 966 (1995).

    Google Scholar 

  33. B. Hallouet, B. Wetzel, and R. Pelster, J. Nanomater. 2007, 34527 (2007). doi 10.1155/2007/34527

  34. R. Pelster and U. Simon, Colloid Polym. Sci. 227, 2 (1999). doi 10.1007/s003960050

    Article  Google Scholar 

  35. R. Anton, Carbon 46, 656 (2008). doi 10.1016/j.carbon.2008.01.021

    Article  Google Scholar 

  36. Y. Du, M. Xu, J. Wu, Y. Shi, and H. Lu, J. Appl. Phys. 70, 5903 (1991). doi 10.1063/1.3501

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Yu. Moroz.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaichuk, G.A., Moroz, O.Y. & Dunaevskii, S.M. Electric Properties of Nanocomposite Films Based on Amorphous Hydrogenated Carbon. Tech. Phys. 63, 1620–1625 (2018). https://doi.org/10.1134/S1063784218110208

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218110208

Keywords

Navigation