Skip to main content
Log in

Electrical and Mechanical Properties of CeO2-Based Thin-Film Coatings Obtained by Electrophoretic Deposition

  • PHYSICS OF NANOSTRUCTURES
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Nanometer Ce0.8(Sm0.75Sr0.20Ba0.05)0.2O2 – δ powder with mean nanoparticle size of 15 nm has been obtained by laser evaporation of a solid-phase target followed by condensation. The nanopowder has been used to prepare suspensions for electrophoretic deposition in a mixed isopropanol : acetyl acetone = 50 : 50 vol % disperse medium offering the unique property of self-stabilization. Optimal conditions for electrophoretic deposition have been found, and uniform thin-film electrolytic coatings have been formed on a La2NiO4 cathodic carrier substrate (12–15% porosity). It has been shown that the resulting electrolyte offers a high adhesivity and has, after sintering at 1400°C, a compact granular structure with grains from 1 to 8 μm in size. The conductivity of the 2-μm-thick electrolyte equals 0.1 S/cm at 650°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. W. Vielstich, A. Lamm, and H. A. Gasteiger, Handbook of Fuel Cells: Fundamentals, Technology, Applications (Wiley, 2003), Vols. 3–4.

    Google Scholar 

  2. N. Laosiripojana, W. Wiyaratn, W. Kiatkittipong, A. Arpornwichanop, A. Soottitantawat, and S. Assabumrungrat, Eng. J. 13, 65 (2009).

    Article  Google Scholar 

  3. N. Q. Minh, Solid State Ionics 174, 271 (2004).

    Article  Google Scholar 

  4. E. D. Wachsman and S. C. Singhal, Am. Ceram. Soc. Bull. 89 (3), 22 (2010).

    Google Scholar 

  5. J. W. Fergus, J. Power Sources 162, 30 (2006).

    Article  ADS  Google Scholar 

  6. M. Yashima, M. Kakihana, and M. Yoshimura, Solid State Ionics 8688, 1131 (1996).

  7. Y. Chen, N. Orlovskaya, E. A. Payzant, T. Graule, and J. Kuebler, J. Eur. Ceram. Soc. 35, 951 (2015).

    Article  Google Scholar 

  8. M. Mogensen, N. M. Sammes, and G. A. Tompsett, Solid State Ionics 129, 63 (2000).

    Article  Google Scholar 

  9. T. Mori, J. Drennan, Y. Wang, J. H. Lee, J. G. Li, and T. Ikegami, J. Electrochem. Soc. 150, A665 (2003).

    Article  Google Scholar 

  10. E. Yu. Pikalova, V. G. Bamburov, A. A. Murashkina, A. D. Neuimin, A. K. Demin, and S. V. Plaksin, Russ. J. Electrochem. 47, 690 (2011).

    Article  Google Scholar 

  11. L. Besra and M. Liu, Prog. Mater. Sci 52, 1 (2007).

    Article  Google Scholar 

  12. I. Corni, M. P. Ryan, and A. R. Boccaccini, J. Eur. Ceram. Soc. 28, 1353 (2008).

    Article  Google Scholar 

  13. A. G. Bhosale, M. B. Kadam, Joshi. Rajeev, S. S. Pawar, and S. H. Pawar, J. Alloys Compd. 484, 795 (2009).

    Article  Google Scholar 

  14. T. Talebi, B. Raissi, and A. Maghsoudipour, Int. J. Hydrogen Energy 35, 9434 (2010).

    Article  Google Scholar 

  15. F. Guo, A. Javed, I. P. Shapiro, and P. Xiao, J. Eur. Ceram. Soc. 32, 211 (2012).

    Article  Google Scholar 

  16. H. Xu, I. P. Shapiro, and P. Xiao, J. Eur. Ceram. Soc. 30, 1105 (2010).

    Article  Google Scholar 

  17. E. G. Kalinina, A. P. Safronov, and Yu. A. Kotov, Russ. J. Electrochem. 47, 671 (2011).

    Article  Google Scholar 

  18. E. G. Kalinina, N. A. Lyutyagina, D. V. Leiman, and A. P. Safronov, Nanotechnol. Russ. 9, 274 (2014).

    Article  Google Scholar 

  19. E. G. Kalinina, N. A. Lyutyagina, A. P. Safronov, and E. S. Buyanova, Inorg. Mater. 50, 184 (2014).

    Article  Google Scholar 

  20. E. G. Kalinina and N. A. Lyutyagina, Zh. Fiz. Khim. 88, 1840 (2014).

    Google Scholar 

  21. E. Yu. Pikalova, A. V. Nikonov, V. D. Zhuravlev, V.   G.   Bamburov, O. M. Samatov, A. S. Lipilin, V.  R.  Khrustov, I. V. Nikolaenko, S. V. Plaksin, and N. G. Molchanova, Inorg. Mater. 47, 396 (2011).

    Article  Google Scholar 

  22. E. G. Kalinina, E. Yu. Pikalova, A. V. Menshikova, and I. V. Nikolaenko, Solid State Ionics 288, 110 (2016).

    Article  Google Scholar 

  23. E. G. Kalinina, O. M. Samatov, and A. P. Safronov, Inorg. Mater. 52, 858 (2016).

    Article  Google Scholar 

  24. S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity (Academic, 1982).

    Google Scholar 

  25. T. Ishihara, K. Sato, and Y. Takita, J. Am. Ceram. Soc. 79, 913 (1996).

    Article  Google Scholar 

  26. Y. Fukada, N. Nagarajan, and W. Mekky, J. Mater. Sci. 39, 787 (2004).

    Article  ADS  Google Scholar 

  27. Ch. Peters, A. Weber, B. Butz, D. Gerthsen, and E. Ivers-Tiffe, J. Am. Ceram. Soc. 92, 2017 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Kalinina.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinina, E.G., Pikalova, E.Y. & Scherbinin, S.V. Electrical and Mechanical Properties of CeO2-Based Thin-Film Coatings Obtained by Electrophoretic Deposition. Tech. Phys. 63, 1636–1641 (2018). https://doi.org/10.1134/S1063784218110130

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218110130

Keywords

Navigation