Skip to main content
Log in

Anisotropy of Giant Nonlinear Magnetoelectric Effects in Hexaferrites with the Magnetoplumbite Structure

  • Solid State
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We report on the results of investigation of anisotropy of the nonlinear magnetoelectric current effect in M-type hexaferrites with a collinear magnetic ordering at room temperature. It is found that as a result of the passage of a direct electric current in a plane perpendicular to the hexagonal axis of the strontium hexaferrite sample, the saturation magnetization and the anisotropy constant of the material decrease. The change in the magnetic parameters measured using radio spectroscopic methods is found to be proportional to the supplied electric power density; the determined proportionality factors turn out to be several times larger than in the case when the current passes along the axis. We propose a phenomenological theory that explains the observed effects qualitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Berger, Phys. Rev. B 54, 9353 (1996). doi https://doi.org/10.1103/PhysRevB.54.9353

    Article  ADS  Google Scholar 

  2. A. Brataas, A. D. Kent, and H. Ohno, Nat. Mater. 11, 372 (2012). doi https://doi.org/10.1038/nmat3311

    Article  ADS  Google Scholar 

  3. D. C. Ralph and M. D. Stiles, J. Magn. Magn. Mater. 320, 1190 (2008). doi https://doi.org/10.1016/j.jmmm.2007.12.019

    Article  ADS  Google Scholar 

  4. C.-W. Nan, M. I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, J. Appl. Phys. 103, 031101 (2008). doi https://doi.org/10.1063/1.2836410

    Article  ADS  Google Scholar 

  5. W. Eerenstein, N. Mathur, and J. Scott, Nature 442, 759 (2006). doi https://doi.org/10.1038/nature05023

    Article  ADS  Google Scholar 

  6. A. F. Popkov, M. D. Davydova, K. A. Zvezdin, S. V. Solov’yov, and A. K. Zvezdin Phys. Rev. B 93, 094435 (2016). doi https://doi.org/10.1103/PhysRevB.93.094435

    Article  ADS  Google Scholar 

  7. C. M. Fang, F. Kools, R. Metselaar, G. DeWith, and R. A. de Groot, J. Phys.: Condens. Matter 15, 6229 (2003). doi https://doi.org/10.1088/0953-8984/15/36/311

    ADS  Google Scholar 

  8. H. Izadkhah, S. Zare, S. Somu, and C. Vittoria, Appl. Phys. Lett. 106, 142905 (2015). doi https://doi.org/10.1063/1.4916102

    Article  ADS  Google Scholar 

  9. G. Srinivasan, I. V. Zavislyak, and A. S. Tatarenko, Appl. Phys. Lett. 89, 152508 (2006). doi https://doi.org/10.1063/1.2360901

    Article  ADS  Google Scholar 

  10. Y.-Y. Song, J. Das, P. Krivosik, N. Mo, and C. E. Patton, Appl. Phys. Lett. 94, 182505 (2009). doi https://doi.org/10.1063/1.3131042

    Article  ADS  Google Scholar 

  11. I. V. Zavislyak, M. A. Popov, and G. Srinivasan, Phys. Rev. B 94, 224419 (2016). doi https://doi.org/10.1103/PhysRevB.94.224419

    Article  ADS  Google Scholar 

  12. H. Schmid, J. Phys.: Condens. Matter 20, 434201 (2008). doi https://doi.org/10.1088/0953-8984/20/43/434201

    ADS  Google Scholar 

  13. A. I. Akhiezer, V. G. Bar’yakhtar, and S. V. Peletminskii, Spin Waves (Nauka, Moscow, 1967).

    Google Scholar 

  14. A. G. Gurevich and G. A. Melkov, Magnetic Oscillations and Waves (Nauka, Moscow, 1994).

    Google Scholar 

  15. G. Aubert, J. Appl. Phys. 53, 8125 (1982). doi https://doi.org/10.1063/1.330315

    Article  ADS  Google Scholar 

  16. R. E. Newnham, Properties of Materials: Anisotropy, Symmetry, Structure (Oxford Univ. Press, Oxford, 2005).

    Google Scholar 

  17. K. Zaveta, Phys. Status Solidi b 3, 2111 (1963). doi https://doi.org/10.1002/pssb.19630031115

    Article  ADS  Google Scholar 

  18. V. V. Danilov, I. V. Zavislyak, and M. G. Balinskii, Spin-Wave Electrodynamics (Lybid’, Kiev, 1991).

    Google Scholar 

  19. D. J. De Bitetto, J. Appl. Phys. 35, 3482 (1964). doi https://doi.org/10.1063/1.1713254

    Article  ADS  Google Scholar 

  20. Landolt-Bornstein. New Series, Vol. III/4B: Magnetic and Other Properties of Oxides and Related Compounds, Ed. by K.-H. Hellwege and A. M. Hellwege (Springer, New York, 1970).

    Google Scholar 

  21. M. Beleggia, M. De Graef, and Y. T. Millev, J. Phys. D: Appl. Phys. 39, 891 (2006). doi https://doi.org/10.1088/0022-3727/39/5/001

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Popov.

Additional information

Original Russian Text © M.A. Popov, I.V. Zavislyak, 2018, published in Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 88, No. 8, pp. 1205–1210.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, M.A., Zavislyak, I.V. Anisotropy of Giant Nonlinear Magnetoelectric Effects in Hexaferrites with the Magnetoplumbite Structure. Tech. Phys. 63, 1171–1176 (2018). https://doi.org/10.1134/S1063784218080157

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218080157

Navigation