Skip to main content
Log in

Interaction of an Optical Discharge with a Shock Wave

  • Gases and Liquids
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The results of an experimental study of the impact of the focused pulsed-periodic radiation from a CO2 laser on a gas-dynamic structure in a supersonic jet are presented. The radiation of the CO2 laser is propagated across the stream and focused by a lens on the axis of the supersonic jet. To register the flow structure, a shadow scheme with a slit and a flat knife located along the flow is used. The image is fixed by a speed camera with an exposure time of 1.5 μs and a frame rate of 1000 1/s. In the flow, the plasma initiated by the pulsedperiodic laser is visualized in order to identify and determine the period of plasma development, as well as the motion of the initial front of the shock wave. It is shown that at the transverse input of laser radiation into the stream the periodic structure of the thermal trace is created with the formation of an unsteady shock wave from the energy release zone. At small repetition rates of laser radiation pulses, the thermal spot interacts with the flow in the pulsed mode. It is shown that elliptic nonstationary shock waves are formed only at low subsonic flow velocities and in a stationary atmosphere. The process of nonstationary ignition by an optical discharge of a methane–air mixture during a subsonic outflow into a motionless atmosphere is shown experimentally. The results of optical visualization indicate burning in the trace behind the optical discharge region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. P. Raizer, Laser Spark and Propagation of Discharges (Nauka, Moscow, 1974).

    Google Scholar 

  2. T. X. Phuoc, Opt. Laser Eng. 44, 351 (2006).

    Article  MathSciNet  Google Scholar 

  3. H. Yan, R. Adelgren, M. Boguszko, G. Elliott, and D. Knight, in Proc. 41st Aerospace Sciences Meeting and Exhibit, Reno, United States, 2003, p. AIAA-2003-1051.

    Google Scholar 

  4. P. K. Tret’yakov, G. N. Grachev, A. I. Ivanchenko, V. L. Krainev, A. G. Ponomarenko, and V. N. Tishchenko, Dokl. Ross. Akad. Nauk 336, 466 (1994).

    Google Scholar 

  5. P. K. Tret’yakov, A. F. Garanin, G. N. Grachev, V. L. Krainev, A. G. Ponomarenko, V. N. Tishchenko, and V. I. Yakovlev, Dokl. Phys. 41, 566 (1996).

    ADS  Google Scholar 

  6. V. N. Zudov, P. K. Tret’yakov, A. V. Tupikin, and V. I. Yakovlev, Fluid Dyn. 38, 782 (2003).

    Article  ADS  Google Scholar 

  7. V. N. Zudov, Tech. Phys. Lett. 35, 315 (2009).

    Article  ADS  Google Scholar 

  8. V. N. Zudov, P. K. Tret’yakov, and A. V. Tupikin, Nauchn. Vizualizatsiya 8 (2), 24 (2016).

    Google Scholar 

  9. D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, and R. Woolley, Combust. Flame 138, 55 (2004).

    Article  Google Scholar 

  10. D. Bradley and F. K. K. Lung, Combust. Flame 69, 71 (1987).

    Article  Google Scholar 

  11. S. N. Bagaev, G. N. Grachev, A. G. Ponomarenko, et al., in Science and Nanotechnology (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2007), pp. 123–135.

    Google Scholar 

  12. A. A. Sorokin, S. V. Bobashev, K. Tiedtke, and M. Richter, J. Phys. B 39, L299 (2006).

    Article  ADS  Google Scholar 

  13. I. G. Dors and C. G. Parigger, Appl. Opt. 42, 5978 (2003).

    Article  ADS  Google Scholar 

  14. S. Ghosh and K. Mahesh, J. Fluid Mech. 605, 329 (2008).

    Article  ADS  Google Scholar 

  15. Y.-L. Chen, J. W. L. Lewis, and C. Parigger, J. Quant. Spectrosc. Radiat. Transfer 67, 91 (2000).

    Article  ADS  Google Scholar 

  16. C. G. Parigger, in Laser-Induced Breakdown Spectroscopy, Ed. by A. W. Miziolek, V. Palleschi, and I. Schechter (Cambridge Univ. Press, New York, 2006), Chap. 4.

  17. S. Brieschenk, R. Hruschka, S. O’Byrne, and H. Kleine, Proc. SPIE 7126, 71260N (2009).

    Article  Google Scholar 

  18. A. Sasoh, T. Ohtani, and K. Mori, Phys. Rev. Lett. 97, 205004 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Zudov.

Additional information

Original Russian Text © V.N. Zudov, P.K. Tret’yakov, 2018, published in Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 88, No. 3, pp. 350–357.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zudov, V.N., Tret’yakov, P.K. Interaction of an Optical Discharge with a Shock Wave. Tech. Phys. 63, 339–346 (2018). https://doi.org/10.1134/S1063784218030258

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218030258

Navigation