Skip to main content
Log in

Two Modes of the Self-Similar Evolution of Charged Plasma

  • Plasma
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Two self-similar modes of evolution of charged particles’ high-current beam are described analytically. The situation being considered falls within the field of nonneutral plasma electrodynamics. The process is considered in terms of the nonlinear 1D evolution of the charge density w(x, t) in the channel of a longdistance transmission line with nonlinearly distributed resistance R, capacitance C, and inductance L: R = R(w), C = C(w), and L = 0. It is shown that initially the front of w(x, t) accelerates and then slows down. The description of the process in the channel is based on the charge conservation law. An idealized “kinematic” approach is used according to which an equation in two unknowns (charge density and current density in the channel) can be reduced to an equation in one unknown w(x, t). A strongly nonlinear wave process is studied. A discontinuous solution w(x, t) is constructed with a zero boundary condition at infinity. Such a model description can apply only for revealing the main qualitative features of a complex process. Analytical expressions for the variation in the evolution of the front velocity and perturbed area length are derived. An interrelation between the nonlinearity parameter of the process and the amount of charge in the interelectrode gap is suggested based on the experimental data for the evolution of streamers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. M. Bazelyan and Yu. P. Raizer, Phys.-Usp. 43, 701 (2000)

    Article  ADS  Google Scholar 

  2. E. M. Bazelyan and Yu. P. Raizer, The Physics of Lightning and Lightning Protection (Fizmatlit, Moscow, 2001).

    Google Scholar 

  3. E. M. Bazelyan and Yu. P. Raizer, Spark Discharge (Mosk. Fiz.-Tekh. Inst., Moscow, 1997).

    Google Scholar 

  4. S. I. Yakovlenko, Tech. Phys. 49, 1150 (2004).

    Article  Google Scholar 

  5. E. D. Lozanskii and O. B. Firsov, Spark Theory (Atomizdat, Moscow, 1975), Chap. 6–7.

    Google Scholar 

  6. P. A. Vitello, B. M. Penetrante, and J. N. Bartsley, Phys. Rev. E 49, 5574 (1994).

    Article  ADS  Google Scholar 

  7. N. L. Aleksandrov and E. M. Bazelyan, J. Phys. D: Appl. Phys. 29, 740 (1996).

    Article  ADS  Google Scholar 

  8. A. A. Kulikovsky, Phys. Rev. E 57, 7066 (1998).

    Article  ADS  Google Scholar 

  9. N. Y. Babaeva and G. V. Naidis, J. Phys. D: Appl. Phys. 29, 2423 (1996).

    Article  ADS  Google Scholar 

  10. N. Yu. Babaeva and G. V. Naidis, Tech. Phys. Lett. 25, 91 (1999).

    Article  ADS  Google Scholar 

  11. M. Arrayas, U. Erbert, and W. Hundsdorfer, Phys. Rev. Lett. 7, 174 (2002).

    Google Scholar 

  12. I. Gallimberti, J. Phys. D: Appl. Phys. 5, 2179 (1972).

    Article  ADS  Google Scholar 

  13. K. N. Schneider, Electra, No. 53, 31 (1977).

    Google Scholar 

  14. N. Goelian, P. Lalande, A. Bondiou-Clergerie, and G. L. Bacchiega, J. Phys. D: Appl. Phys. 30, 2441 (1997).

    Article  ADS  Google Scholar 

  15. K. N. Schneider, IEE Proc. A 133 (7), 3 (1986).

    Google Scholar 

  16. A. Bondiou and I. Gallimberti, J. Phys. D: Appl. Phys. 27, 1252 (1994).

    Article  ADS  Google Scholar 

  17. P. Ortega, in Proc. 7th Int. Symp. on High Voltage Engineering, Dresden, Germany, 1991, Ed. by W. Kleber (Dresden Univ., Dresden, 1991), p. 105.

  18. J. Y. Won and P. F. Williams, J. Phys. D: Appl. Phys. 35, 205 (1972).

    Google Scholar 

  19. G. B. Whitham, Proc. R. Soc. London, Ser. A 203, 571 (1950).

    Article  ADS  Google Scholar 

  20. G. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974).

    MATH  Google Scholar 

  21. V. A. Pavlov, J. Appl. Mech. Tech. Phys. 51, 800 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  22. Ya. B. Zel’dovich and A. S. Kompaneets, in Collected Volume Dedicated to the 70th Birthday of Academician A. F. Ioffe (Akad. Nauk SSSR, Moscow, 1950), p. 61.

    Google Scholar 

  23. G. I. Barenblatt, Prikl. Mat. Mekh. 16 (31), 67 (1952).

    Google Scholar 

  24. G. I. Barenblatt, Similarity, Self-Similarity, and Intermediate Asymptotics (Gidrometeoizdat, Leningrad, 1978), Chap. 2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Pavlov.

Additional information

Original Russian Text © V.A. Pavlov, 2018, published in Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 88, No. 3, pp. 358–364.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlov, V.A. Two Modes of the Self-Similar Evolution of Charged Plasma. Tech. Phys. 63, 347–353 (2018). https://doi.org/10.1134/S1063784218030180

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218030180

Navigation