Skip to main content
Log in

Efficient Broadband Terahertz Radiation Detectors Based on Bolometers with a Thin Metal Absorber

  • Physical Electronics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The matrix method has been used to calculate the coefficients of absorption of terahertz radiation in conventional (with radiation incident from vacuum adjacent to the bolometer) and inverted (with radiation incident from the substrate on which the bolometer was fabricated) bolometric structures. Near-unity absorption coefficients were obtained when an additional cavity in the form of a gap between the bolometer and the input or output window was introduced. Conventional bolometers then became narrowband, while inverted-type devices remained broadband.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Terahertz Spectroscopy: Principles and Applications, Ed. by S. L. Dexheimer (CRC Press, Boca Raton, 2008).

  2. W. L. Chan, J. Deibel, and D. M. Mittleman, Rep. Prog. Phys. 70, 1325 (2007).

    Article  ADS  Google Scholar 

  3. A. W. M. Lee and Q. Hu, Opt. Lett. 30, 2563 (2005).

    Article  ADS  Google Scholar 

  4. A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, IEEE Photonics Technol. Lett. 18, 1415 (2006).

    Article  ADS  Google Scholar 

  5. M. A. Dem’yanenko, D. G. Esaev, B. A. Knyazev, G. N. Kulipanov, and N. A. Vinokurov, Appl. Phys. Lett. 92, 131116 (2008).

    Article  ADS  Google Scholar 

  6. N. Oda, H. Yoneyama, T. Sasaki, M. Sano, S. Kurashina, I. Hosako, N. Sekine, T. Sudoh, and T. Irie, Proc. SPIE 6940, 69402Y (2008).

    Article  ADS  Google Scholar 

  7. N. Oda, M. Sano, K. Sonoda, H. Yoneyama, S. Kurashina, M. Miyoshi, T. Sasaki, I. Hosako, N. Sekine, T. Sudou, and S. Ohkubo, Proc. SPIE 8012, 80121B (2011).

    Article  ADS  Google Scholar 

  8. M. A. Dem’yanenko, J. Opt. Technol. 84, 34 (2017).

    Article  Google Scholar 

  9. L. N. Hadley and D. M. Dennison, J. Opt. Soc. Am. 37, 451 (1947).

    Article  ADS  Google Scholar 

  10. N. Nemoto, N. Kanda, R. Imai, K. Konishi, M. Miyoshi, S. Kurashina, T. Sasaki, N. Oda, and M. Kuwata-Gonokami, IEEE Trans. Terahertz Sci. Technol. 6, 175 (2016).

    Article  ADS  Google Scholar 

  11. E. Wolf and M. Born, Principles of Optics (Pergamon, Oxford, 1970).

    Google Scholar 

  12. M. Camacho and A. I. Oliva, Microelectron. J. 36, 555 (2005).

    Article  Google Scholar 

  13. P. E. Howard, J. E. Clarke, C. Li, J. W. Yang, W. Y. Wong, and A. Bogosyan, Proc. SPIE 5074, 527 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Dem’yanenko.

Additional information

Original Russian Text © M.A. Dem’yanenko, 2018, published in Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 88, No. 1, pp. 121–126.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dem’yanenko, M.A. Efficient Broadband Terahertz Radiation Detectors Based on Bolometers with a Thin Metal Absorber. Tech. Phys. 63, 120–125 (2018). https://doi.org/10.1134/S1063784218010097

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218010097

Navigation