Skip to main content
Log in

Examination of a molecular se beam by mass spectrometry with electron ionization

  • Atomic and Molecular Physics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The methodology and results of mass-spectrometric studies of producing positive ions as a result of the dissociative ionization of a molecular selenium beam by electron impact are discussed. The appearance energies of fragment ions were determined from the ionization efficiency curves. The dynamics of production of molecular selenium ions in the temperature range of 420–500 K was also examined. The energy dependences of efficiency of production of singly charged Se n + ions for n = 1–4 and the doubly charged selenium ion in the interval from the threshold to 36 eV were studied for the first time. The observed specific features of effective ionization cross sections were analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. E. Weiser, N. Holden, T. B. Coplen, et al., Pure Appl. Chem. 85, 1047 (2013).

    Google Scholar 

  2. F. J. Mompean and J. Perrone, Chemical Thermodynamics, Ed. by F. J. Mompean and J. Perrone (Elsevier, Amsterdam, 2010).

  3. W. T. Silfvast and M. V. Klein, Appl. Phys. Lett. 17, 400 (1970).

    Article  ADS  Google Scholar 

  4. L. Johansson, G. Gafvelin, and E. S. J. Amér, Biochim. Biophys. Acta. 1726, 1 (2005). doi 10.1016/j.bbagen.2005.05.010

    Article  Google Scholar 

  5. NIST Standard Reference Database. http://www.webbook. nist.gov.

  6. N. Greenwood and A. Earnshaw, Chemistry of the Elements, 2nd ed. (Butterworth-Heinemann, Oxford, 1997), pp. 645–662.

    Google Scholar 

  7. A. N. Zavilopulo, P. P. Markush, and O. B. Shpenik, Tech. Phys. 59, 951 (2014).

    Article  Google Scholar 

  8. A. N. Zavilopulo, E. A. Mironets, and A. S. Agafonova, Prib. Tekh. Eksp., No. 1, 73 (2012).

    Google Scholar 

  9. A. N. Zavilopulo, O. B. Shpenik, M. I. Mikita, and A. M. Mylymko, Tech. Phys. Lett. 42, 427 (2016).

    Article  ADS  Google Scholar 

  10. R. F. Vrebrick, J. Phys. 48, 5741 (1968).

    Google Scholar 

  11. A. Yamdagni and R. F. Porter, J. Electrochem. Soc. 115, 601 (1968).

    Article  Google Scholar 

  12. R. T. Grimley, Q. G. Grindstaff, T. A. DeMercurio, and J. A. Forsman, J. Phys. Chem. 86, 976 (1982).

    Article  Google Scholar 

  13. H. Fujisaki, J. B. Westmore, and A. W. Tickner, Can. J. Chem. 44, 3063 (1966).

    Article  Google Scholar 

  14. J. Berkowitz and W. A. Chupka, J. Chem. Phys. 45, 4289 (1966).

    Article  ADS  Google Scholar 

  15. K. Kooser, D. T. Ha, E. Itälä, et al., J. Chem. Phys. 137, 044304-9 (2012). doi 10.1063/1.4737633

  16. C. Bréchignac, Ph. Cahuzac, N. Kébali, and J. Leygnier, J. Chem. Phys. 112, 10197 (2000). doi 10.1063/1.481661

    Article  ADS  Google Scholar 

  17. A. K. Hearley, F. G. Brian, et al., Inorg. Chim. Acta 334, 105 (2002).

    Article  Google Scholar 

  18. B. Tribollet, A. Benamar, D. Rayane, et al., Z. Phys. D 26, 352 (1993).

    Article  ADS  Google Scholar 

  19. J. Becker, K. Rademann, and F. Hensel, Z. Phys. D 19, 229 (1991).

    Article  ADS  Google Scholar 

  20. G. M. Minchev, M. Eddrief, L. M. Trendafilov, et al., Vacuum 47 (2), 157 (1996).

    Article  Google Scholar 

  21. W. R. Salaneck, N. O. Iipari, A. Paton, et al., Phys. Rev. B 52, 1524 (1995).

    Article  Google Scholar 

  22. Z. Q. Li, J. Z. Yu, K. Ohno, et al., Phys. Rev. B 12, 1493 (1975).

    Article  Google Scholar 

  23. G. P. Guptat, K. A. Berrington, and A. E. Kingston, J. Phys. B: At., Mol. Opt. Phys. 22, 3289 (1989).

    Article  ADS  Google Scholar 

  24. Yu. M. Smirnov, Teplofiz. Vys. Temp. 44, 664 (2006).

    Google Scholar 

  25. J. Berkowitz and W. A. Chupka, J. Chem. Phys. 48, 5743 (1968). doi 10.1063/1.1668677

    Article  ADS  Google Scholar 

  26. H. Rau, J. Chem. Thermodyn. 6, 525 (1974).

    Article  Google Scholar 

  27. R. Viswanathan, R. Balasubramanian, D. Darwin, et al., J. Alloys Compd. 603, 75 (2014).

    Article  Google Scholar 

  28. Yu. M. Smirnov, Zh. Prikl. Specktrosk. 55, 315 (1991).

    Google Scholar 

  29. A Handbook of Chemist, Ed. by B. P. Nikol’skii (Khimiya, Moscow, 1982), Vol. 1, p.729.

  30. A. N. Zavilopulo, O. B. Shpenik, P. P. Markush, et al., Tech. Phys. Lett. 40, 13 (2014).

    Article  ADS  Google Scholar 

  31. NIST Standard Reference Database. http://www.webbook.nist.gov.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Zavilopulo.

Additional information

Original Russian Text © A.N. Zavilopulo, O.B. Shpenik, A.M. Mylymko, 2017, published in Zhurnal Tekhnicheskoi Fiziki, 2017, Vol. 87, No. 3, pp. 335–340.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zavilopulo, A.N., Shpenik, O.B. & Mylymko, A.M. Examination of a molecular se beam by mass spectrometry with electron ionization. Tech. Phys. 62, 359–364 (2017). https://doi.org/10.1134/S106378421703029X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378421703029X

Navigation