Skip to main content
Log in

Equation for the envelope of a relativistic electron beam propagating in a resistive plasma channel during the evolution of resistive hose instability

  • Theoretical and Mathematical Physics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Kinetic methods are used to derive the transport equations, virial equation, dynamic equilibrium condition, and the equation of the envelope of an axially symmetric paraxial relativistic electron beam propagating in an Ohmic plasma channel during the evolution of resistive firehose instability. The equation of the beam envelope is generalized by taking this instability into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Rukhadze, L. S. Bogdankevich, S. E. Rosinskii, and V. G. Rukhlin, Physics of Strong-Current Relativistic Electron Beams (Atomizdat, Moscow, 1980).

    Google Scholar 

  2. A. N. Didenko, V. P. Grigor’ev, and Yu. P. Usov, High-Power Electron Beams and Their Applications (Atomizdat, Moscow, 1977).

    Google Scholar 

  3. M. V. Kuzelev and A. A. Rukhadze, Electrodynamics of Dense Electron Beams in Plasmas (Fizmatlit, Moscow, 1990).

    Google Scholar 

  4. R. B. Miller, Introduction to the Physics of Intense Charged Particle Beams (Plenum, New York, 1982; Mir, Moscow, 1984).

    Google Scholar 

  5. E. K. Kolesnikov, A. S. Manuilov, and B. V. Filippov, Dynamics of Beams of Charged Particles in Gas–Plasma Media (Izd. S.-Peterb. Gos. Univ., St. Petersburg, 2002).

    Google Scholar 

  6. E. K. Kolesnikov, A. S. Manuilov, and A. G. Zelenskii, Dynamics of Relativistic Electron Beams Propagating in the Ion-Focusing Mode (Pozitiv, Voskresensk, 2013).

    Google Scholar 

  7. E. P. Lee, Phys. Fluids 19, 60 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  8. E. K. Kolesnikov and A. S. Manuilov, Tech. Phys. 49, 1208 (2004).

    Article  Google Scholar 

  9. E. K. Kolesnikov and A. S. Manuilov, Tech. Phys. 50, 937 (2005).

    Article  Google Scholar 

  10. A. S. Manuilov, Tech. Phys. 50, 491 (2005).

    Article  Google Scholar 

  11. E. P. Lee, Phys. Fluids 21, 1327 (1978).

    Article  ADS  Google Scholar 

  12. E. R. Nadezhdin and G. A. Sorokin, Sov. J. Plasma Phys. 9, 576 (1983).

    ADS  Google Scholar 

  13. N. A. Kondrat’ev and V. I. Smetanin, Tech. Phys. 50, 351 (2005).

    Article  Google Scholar 

  14. M. Lampe, W. M. Sharp, R. Hubbard, et al., Phys. Fluids 27, 2921 (1984).

    Article  ADS  Google Scholar 

  15. E. K. Kolesnikov and A. S. Manuilov, Sov. Phys. Tech. Phys. 36, 1351 (1991).

    Google Scholar 

  16. A. S. Manuilov, Tech. Phys. 58, 76 (2013).

    Article  Google Scholar 

  17. E. K. Kolesnikov and A. S. Manuilov, Tech. Phys. 58, 1699 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Manuilov.

Additional information

Original Russian Text © A.S. Manuilov, 2017, published in Zhurnal Tekhnicheskoi Fiziki, 2017, Vol. 62, No. 2, pp. 163–169.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manuilov, A.S. Equation for the envelope of a relativistic electron beam propagating in a resistive plasma channel during the evolution of resistive hose instability. Tech. Phys. 62, 189–195 (2017). https://doi.org/10.1134/S1063784217020189

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784217020189

Navigation