Skip to main content
Log in

Simulation of the phase transition of graphite to the diamond-like LA3 phase

  • Theoretical and Mathematical Physics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The phase transition of graphite to a diamond-like LA3 phase is simulated by the methods of the density functional theory (DFT). The calculations are performed in the local density approximation (LDA) and the generalized gradient approximation (GGA). It is found that the structural transformation must occur at a pressure of 60 or 74 GPa according to calculations based on the DFT–LDA and DFT–GGA, respectively. The height of the potential barrier separating the structural state corresponding to the LA3 phase from the state corresponding to graphite exceeds 0.13 eV/atom. This indicates the possibility of stable existence of the diamond-like LA3 phase under standard conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Osawa, Kagaku (Kyoto) 25, 854 (1970).

    Google Scholar 

  2. D. A. Bochvar and E. G. Gal’pern, Sov. Phys. Dokl. 209, 239 (1973).

    Google Scholar 

  3. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature 318, 162 (1985).

    Article  ADS  Google Scholar 

  4. E. A. Belenkov and V. A. Greshnyakov, New Carbon Mater. 28, 273 (2013)

    Article  Google Scholar 

  5. E. A. Belenkov and V. A. Greshnyakov, Phys. Solid State 55, 1754 (2013).

    Article  ADS  Google Scholar 

  6. Q. Li, Y. Ma, A. R. Oganov, H. Wang, H. Wang, Y. Xu, T. Cui, H. K. Mao, and G. Zou, Phys. Rev. Lett. 102, 175506 (2009).

    Article  ADS  Google Scholar 

  7. K. Umemoto, R. M. Wentzcovitch, S. Saito, and T. Miyake, Phys. Rev. Lett. 104, 125504 (2010).

    Article  ADS  Google Scholar 

  8. X.-F. Zhou, G.-R. Qian, X. Dong, L. Zhang, Y. Tian, and H.-T. Wang, Phys. Rev. B 82, 134126 (2010).

    Article  ADS  Google Scholar 

  9. V. A. Greshnyakov and E. A. Belenkov, JETP 113, 86 (2011).

    Article  ADS  Google Scholar 

  10. Z. Zhao, Bo Xu, X.-F. Zhou, L.-M. Wang, B. Wen, J. He, Z. Liu, H.-T. Wang, and Y. Tian, Phys. Rev. Lett. 107, 215502 (2011).

    Article  ADS  Google Scholar 

  11. H. Niu, X.-Q. Chen, S. Wang, D. Li, W. L. Mao, and Y. Li, Phys. Rev. Lett. 108, 135501 (2012).

    Article  ADS  Google Scholar 

  12. S. Botti, M. Amsler, J. A. Flores-Livas, P. Ceria, S. Goedecker, and M. A. L. Marques, Phys. Rev. B 88, 014102 (2013).

    Article  ADS  Google Scholar 

  13. E. A. Belenkov and V. A. Greshnyakov, JETP 119, 101 (2014).

    Article  ADS  Google Scholar 

  14. E. A. Belenkov and V. A. Greshnyakov, J. Struct. Chem. 55, 409 (2014).

    Article  Google Scholar 

  15. E. A. Belenkov, M. M. Brzhezinskaya, and V. A. Greshnyakov, Diamond Relat. Mater. 50, 9 (2014).

    Article  ADS  Google Scholar 

  16. Da Li, F. Tian, D. Duan, Z. Zhao, Y. Liu, B. Chu, X. Sha, Lu Wang, B. Liu, and T. Cui, RSC Adv. 4, 17 364 (2014).

    Article  Google Scholar 

  17. C. He, L. Meng, C. Tang, and J. Zhong, arXiv:condmat1/412.2301v2.

  18. E. A. Belenkov and V. A. Greshnyakov, Phys. Solid State 57, 205 (2015).

    Article  ADS  Google Scholar 

  19. E. A. Belenkov and V. A. Greshnyakov, Phys. Solid State 57, 1253 (2015).

    Article  ADS  Google Scholar 

  20. E. A. Belenkov and V. A. Greshnyakov, Phys. Solid State 57, 2331 (2015).

    Article  ADS  Google Scholar 

  21. M. T. Yin and M. L. Cohen, Phys. Rev. B 26, 5668 (1982).

    Article  ADS  Google Scholar 

  22. M. T. Yin, Phys. Rev. B 30, 1773 (1984).

    Article  ADS  Google Scholar 

  23. S. Scandolo, M. Bernasconi, G. L. Chiarotti, P. Focher, and E. Tosatti, Phys. Rev. Lett. 74, 4015 (1995).

    Article  ADS  Google Scholar 

  24. E. A. Belenkov and V. V. Mavrinskii, Kristallografiya 53, 83 (2008).

    ADS  Google Scholar 

  25. R. H. Baughman and D. S. Galvao, Chem. Phys. Lett. 211, 110 (1993).

    Article  ADS  Google Scholar 

  26. P. A. Schultz, K. Leung, and E. B. Stechel, Phys. Rev. B 59, 733 (1999).

    Article  ADS  Google Scholar 

  27. R. H. Baughman, A. Y. Liu, C. Cui, and P. J. Schields, Synth. Met. 86, 2371 (1997).

    Article  Google Scholar 

  28. F. P. Bundy, W. A. Bassett, M. S. Weathers, R. J. Hemley, H. K. Mao, and A. F. Goncharov, Carbon 34, 141 (1996).

    Article  Google Scholar 

  29. W. L. Mao, Ho-K. Mao, P. J. Eng, T. P. Trainor, M. Newville, C.-C. Kao, D. L. Heinz, J. Shu, Y. Meng, and R. J. Hemley, Science 302, 425 (2003).

    Article  ADS  Google Scholar 

  30. H.-M. Hutmacher, H.-G. Fritz, and H. Musso, Angew. Chem., Int. Ed. Engl. 14, 180 (1975).

    Article  Google Scholar 

  31. V. T. Hoffmann and H. Musso, Angew. Chem., Int. Ed. Engl. 26, 1006 (1987).

    Article  Google Scholar 

  32. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, et al., J. Phys.: Condens. Matter 21, 395502 (2009).

    Google Scholar 

  33. J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Article  ADS  Google Scholar 

  34. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  35. H. O. Pierson, Handbook of Carbon, Graphite, Diamond, and Fullerenes: Properties, Processing and Applications (Noyes, Park Ridge, 1993).

    Google Scholar 

  36. Z. Wang, Y. Zhao, K. Tait, X. Liao, D. Schiferl, C. Zha, R. T. Downs, J. Qian, Y. Zhu, and T. Shen, Proc. Natl. Acad. Sci. U. S. A. 101, 13699 (2004).

    Article  ADS  Google Scholar 

  37. E. A. Belenkov, Inorg. Mater. 37, 928 (2001).

    Article  Google Scholar 

  38. J. I. Paredes, A. Martinez-Alonso, and J. M. D. Tascon, Carbon 39, 476 (2001).

    Article  Google Scholar 

  39. A. S. Fialkov, Carbon, Interlayer Compounds and Composites on Its Basis (Aspekt-Press, Moscow, 1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Belenkov.

Additional information

Original Russian Text © V.A. Greshnyakov, E.A. Belenkov, 2016, published in Zhurnal Tekhnicheskoi Fiziki, 2016, Vol. 86, No. 10, pp. 20–24.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greshnyakov, V.A., Belenkov, E.A. Simulation of the phase transition of graphite to the diamond-like LA3 phase. Tech. Phys. 61, 1462–1466 (2016). https://doi.org/10.1134/S1063784216100133

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784216100133

Navigation