Skip to main content
Log in

Difference in the conditions and characteristics of evaporation of inhomogeneous water drops in a high-temperature gaseous medium

  • Gases and Liquids
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The evaporation of water drops of initial mass 5–15 mg on a stationary graphite substrate, as well as inhomogeneous drops with solitary solid inclusions, during heating by high-temperature combustion products has been investigated experimentally. Experiments have also been carried out with analogous inhomogeneous drops moving through combustion products. The possibility of two mechanisms of phase transformations of inhomogeneous liquid drops has been established. The scales of the effect of the area of the inclusion surface (up to 20%) and the initial mass of water (up to 90%) on the characteristics of the evaporation of inhomogeneous drops have been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. S. Volkov, G. V. Kuznetsov, and P. A. Strizhak, Tech. Phys. 59, 1770 (2014).

    Article  Google Scholar 

  2. V. E. Nakoryakov, G. V. Kuznetsov, and P. A. Strizhak, Dokl. Phys. 60, 428 (2015).

    Article  ADS  Google Scholar 

  3. D. Ciloglu and A. Bolukbasi, Nucl. Eng. Des. 241, 2519 (2011).

    Article  Google Scholar 

  4. R. S. Volkov, M. V. Piskunov, G. V. Kuznetsov, and P. A. Strizhak, J. Heat Transfer 138, 1 (2016).

    Google Scholar 

  5. H. Kim, G. DeWitt, T. McKrell, J. Buongiorno, and L.-W. Hu, Int. J. Multiphase Flow 35, 427 (2009).

    Article  Google Scholar 

  6. A. N. Ishchenko, Voda: Khim. Ekol., No. 7, 2 (2010).

    Google Scholar 

  7. A. Yu. Val’dberg and K. P. Makeeva, Khim. Neftegazov. Mashinostr., No. 5, 42 (2010).

    Google Scholar 

  8. X. Zhou, S. P. D’Aniello, and H.-Z. Yu, Fire Saf. J. 54, 36 (2012). doi 10.1016/j.firesaf.2012.07.007

    Article  Google Scholar 

  9. M. N. Nikitin, Prom. Energ., No. 12, 37 (2010).

    Google Scholar 

  10. Theory of Control over the Pelletizing of Loose Materials, Ed. by E. A. Isaev, I. E. Chernetskaya, L. N. Krakht, and V. S. Titov (Staryi Oskol, 2012).

  11. Surface Treatment in Metallurgy and Machine Building, Ed. by B. N. Mar’in (Dal’nauka, Vladivostok, 2011).

  12. I. S. Anufriev, G. V. Kuznetsov, M. V. Piskunov, P. A. Strizhak, and M. Yu. Chernetskii, Tech. Phys. Lett. 41, 810 (2015).

    Article  ADS  Google Scholar 

  13. Yu. I. Yalamov and M. K. Kuz’min, Tech. Phys. 50, 314 (2005).

    Article  Google Scholar 

  14. R. Mollaret, K. Sefiane, J. R. E. Christy, and D. Veyret, Chem. Eng. Res. Des. 82, 471 (2004).

    Article  Google Scholar 

  15. F. Girard, M. Antoni, and K. Sefiane, Langmuir 26, 4576 (2010).

    Article  Google Scholar 

  16. H. Y. Erbil, G. McHale, and M. I. Newton, Langmuir 18, 2636 (2002).

    Article  Google Scholar 

  17. M. A. Dmitrienko, M. V. Piskunov, P. A. Strizhak, and A. A. Shcherbinina, MATEC Web Conf. 23, 01064 (2015).

    Article  Google Scholar 

  18. R. D. Keane and R. J. Adrian, Appl. Sci. Res. 49 (3), 191 (1992).

    Article  Google Scholar 

  19. J. Westerweel, Meas. Sci. Technol. 8, 1379 (1997).

    Article  ADS  Google Scholar 

  20. J. M. Foucaut and M. Stanislas, Meas. Sci. Technol. 13, 1058 (2002).

    Article  ADS  Google Scholar 

  21. J. Janiszewski, Metrol. Measur. Sys. 19, 797 (2012).

    Google Scholar 

  22. J. Janiszewski, Int. J. Solids Struct. 49, 1001 (2012).

    Article  Google Scholar 

  23. J. Janiszewski, Solid State Phenom. 199, 297 (2013).

    Article  Google Scholar 

  24. J. G. Leidenfrost, Int. J. Heat Mass Transfer 9, 1153 (1966).

    Article  Google Scholar 

  25. B. S. Gottfried, C. J. Lee, and K. J. Bell, Int. J. Heat Mass Transfer 9, 1167 (1966).

    Article  Google Scholar 

  26. A.-L. Biance, C. Clanet, and D. Quere, Phys. Fluids 15, 1632 (2003).

    Article  ADS  Google Scholar 

  27. N. B. Vargaftik, Thermal Properties of Gases and Liquids. A Handbook (Stars, Moscow, 2006).

    Google Scholar 

  28. Y. S. Touloukian, R. W. Powell, C. Y. Ho, P. G. Klemens, Thermophysical Properties of Matter, The TPRC Data Series, Vol. 2: Thermal Conductivity—Nonmetallic Solids (IFI/Plenum, New York, 1971).

    Google Scholar 

  29. V. I. Terekhov and M. A. Pakhomov, Heat and Mass Transfer and Fluid Dynamics in Gas–Droplet Flows (Izd. NGTU, Novosibirsk, 2009).

    MATH  Google Scholar 

  30. D. S. Mikhatulin, Yu. V. Polezhaev, D. L. Reviznikov, Heat and Mass Transfer, Thermal, and Thermal–Errosion Fracture of Heat Protection (Yanus-K, Moscvow, 2011).

    Google Scholar 

  31. V. V. Yagov, Heat Exchange in Single-Phase Media upon Phase Transformations (Mosk. Energ. Inst., Moscow, 2014).

    Google Scholar 

  32. W. E. Ranz and W. R. Marshall, Chem. Eng. Prog. 48 (3), 141 (1952), Chem. Eng. Prog. 48 (3), 173 (1952).

    Google Scholar 

  33. N. A. Fuchs, Evaporation and Droplet Growth in Gaseous Media (Pergamon, London, 1959).

    Google Scholar 

  34. V. I. Terekhov, V. V. Terekhov, N. E. Shishkin, and K. Ch. Bi, Inzh. Fiz. Zh. 83, 829 (2010).

    Google Scholar 

  35. V. N. Yurenev and P. D. Lebedev, Heat Engineering Handbook (Energiya, Moscow, 1976), Vol.2.

    Google Scholar 

  36. Heat Calculation of Boilers: Normative Method, 3rd ed. (TsKTI, St. Petersburg, 1998).

  37. R. S. Volkov, G. V. Kuznetsov, and P. A. Strizhak, Int. J. Heat Mass Transfer 79, 838 (2014).

    Article  Google Scholar 

  38. G. V. Kuznetsov, P. A. Kuibin, and P. A. Strizhak, Teplofiz. Vys. Temp. 53, 264 (2015).

    Google Scholar 

  39. O. V. Vysokomornaya, M. V. Piskunov, P. A. Strizhak, and A. A. Shcherbinina, Pozharovzryvobezopasnost 24 (7), 9 (2015).

    Google Scholar 

  40. G. V. Kuznetsov, M. V. Piskunov, and P. A. Strizhak, Int. J. Heat Mass Transfer 92, 360 (2016).

    Article  Google Scholar 

  41. R. S. Volkov, G. V. Kuznetsov, and P. A. Strizhak, Int. J. Heat Mass Transfer 85, 1 (2015).

    Article  Google Scholar 

  42. R. S. Volkov, O. V. Vysokomornaya, G. V. Kuznetsov, and P. A. Strizhak, Tech. Phys. 60, 1119 (2015).

    Article  Google Scholar 

  43. R. S. Volkov, A. O. Zhdanova, G. V. Kuznetsov, and P. A. Strizhak, Tech. Phys. 60, 1443 (2015).

    Article  Google Scholar 

  44. Yu. I. Yalamov and N. N. Golikova, Tech. Phys. 51, 173 (2006).

    Article  Google Scholar 

  45. E. V. Anokhina, Tech. Phys. 55, 1107 (2010).

    Article  Google Scholar 

  46. S. S. Sazhin, A. E. Elwardany, P. A. Krutitskii, G. Castanet, F. Lemoine, E. M. Sazhina, and M. R. Heikal, Int. J. Heat Mass Transfer 53, 4495 (2010).

    Article  Google Scholar 

  47. S. S. Sazhin, A. E. Elwardany, P. A. Krutitskii, V. Depredurand, G. Castanet, F. Lemoine, E. M. Sazhina, and M. R. Heikal, Int. J. Therm. Sci. 50, 1164 (2011).

    Article  Google Scholar 

  48. S. S. Sazhin, P. A. Krutitskii, I. G. Gusev, and M. R. Heikal, Int. J. Heat Mass Transfer 54, 1278 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Piskunov.

Additional information

Original Russian Text © M.V. Piskunov, P.A. Strizhak, 2016, published in Zhurnal Tekhnicheskoi Fiziki, 2016, Vol. 86, No. 9, pp. 24–31.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piskunov, M.V., Strizhak, P.A. Difference in the conditions and characteristics of evaporation of inhomogeneous water drops in a high-temperature gaseous medium. Tech. Phys. 61, 1303–1311 (2016). https://doi.org/10.1134/S106378421609019X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378421609019X

Navigation