Skip to main content
Log in

Electric method for studying reorientation dynamics of the nematic liquid crystal director

  • Physical Science of Materials
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A method has been proposed for studying the reorientation dynamics of the nematic liquid crystal (NLC) director using the results of measurements of the electric response of an LC cell. The simulation of the time dependences of the current in an LC cell with a homogeneous orientation is carried out upon variation of the applied voltage, the initial tilt angle of the director, dielectric anisotropy, and the elasticity coefficient, as well as the dynamic viscosity, density, and ion mobility in the NLC. A comparison of the experimental and computational curves of the electric response for NLC 5CB shows their good agreement. The method makes it possible to monitor the steady-state current, the density, and the ion mobility in NLCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Schadt, Jpn. J. Appl. Phys. 48, 03B 001(9) (2009).

    Article  Google Scholar 

  2. L. J. Yuan, G. Tan, D. Xu, F. Peng, A. Lorenz, and S.-T. Wu, Opt. Mater. Express 5, 1339 (2015).

    Article  Google Scholar 

  3. I. F. Galin and E. A. Konshina, Opt. Zh. 81 (6), 48 (2014).

    Google Scholar 

  4. H. Chen, M. Hu, F. Peng, J. Li, Z. An, and S.-T. Wu, Opt. Mater. Express 5, 655 (2015).

    Article  Google Scholar 

  5. E. A. Konshina, M. A. Fedorov, A. E. Rybnikova, L. P. Amosova, N. L. Ivanova, M. V. Isaev, and D. S. Kostomarov, Tech. Phys. 54, 555 (2009).

    Article  Google Scholar 

  6. S. A. Jewell, T. S. Taphouse, and J. R. Sambles, Appl. Phys. Lett. 87, 021 106(3) (2005).

    Article  Google Scholar 

  7. V. N. Vasil’ev, E. A. Konshina, M. A. Fedorov, and L. P. Amosova, Tech. Phys. 55, 850 (2010).

    Article  Google Scholar 

  8. S.-T. Wu, J. Appl. Phys. 60, 1836 (1986).

    Article  ADS  Google Scholar 

  9. X. Nie, H. Xianyu, R. Lu, and T. X. Wu, J. Disp. Technol. 3, 280 (2007).

    Article  ADS  Google Scholar 

  10. I. F. Galin and E. A. Konshina, Opt. Zh. 78 (6), 71 (2011).

    Google Scholar 

  11. A. Kubono, Y. Kyokane, R. Akiyama, and K. Tanaka, Appl. Phys. 90, 5859 (2001).

    Article  Google Scholar 

  12. E. A. Konshina, D. A. Vakulin, N. L. Ivanova, E. O. Gavrish, and V. N. Vasil’ev, Tech. Phys. 57, 644 (2012).

    Article  Google Scholar 

  13. A. V. Ivanov, D. A. Vakulin, and E. A. Konshina, Opt. Zh. 81 (3), 23 (2014).

    Google Scholar 

  14. C.-W. Kuo, S.-C. Jeng, H.-L. Wang, and C.-C. Liao, Appl. Phys. Lett. 91, 141 103(3) (2007).

    Google Scholar 

  15. T. Zhang, C. Zhong, and J. Xu, Jpn. J. Appl. Phys. 48, 055 002(6) (2009).

    Google Scholar 

  16. R. Basu, Appl. Phys. Lett. 103, 241 906(4) (2013).

    Article  Google Scholar 

  17. R. Basu and A. Garvey, Appl. Phys. Lett. 105, 151 905 (2014).

    Google Scholar 

  18. P. Nayek, S. Karan, S. Kundu, S. H. Lee, S. D. Gupta, S. K. Roy, and S. K. Roy, J. Phys. D: Appl. Phys. 45, 235 303(9) (2012).

    Article  Google Scholar 

  19. E. A. Konshina, I. F. Galin, D. P. Shcherbinin, and E. O. Gavrish, Liq. Cryst. 41, 1229 (2014).

    Article  Google Scholar 

  20. R. James, G. Stojmenovik, C. Desimpel, S. Vermael, F. A. Fernandez, S. E. Day, and K. Neyts, J. Disp. Technol. 2, 237 (2006).

    Article  ADS  Google Scholar 

  21. M. Mizusaki, T. Miyashita, T. Uchida, Y. Yamada, Y. Ishii, and S. Shigeaki Mizushima, J. Appl. Phys. 102, 014 904(6) (2007).

    Article  Google Scholar 

  22. H. Y. Chen, K. X. Yang, and Z. Y. Lin, J. Phys. D: Appl. Phys. 43, 315 103(5) (2010).

    Google Scholar 

  23. I. W. Stewart, The Static and Dynamic Continuum Theory of Liquid Crystals (Taylor, London, 2004).

    Google Scholar 

  24. C. W. Oseen, Trans. Faraday Soc. 29, 883 (1933).

    Article  Google Scholar 

  25. F. C. Frank, Discuss. Faraday Soc. 25, 19 (1958).

    Article  Google Scholar 

  26. F. M. Leslie, Arch. Ration. Mech. Anal. 28, 265 (1968).

    Article  MathSciNet  Google Scholar 

  27. M. A. Zelikman and E. D. Eidel’man, Tech. Phys. Lett. 41, 614 (2015).

    Article  Google Scholar 

  28. M. I. Barnik, L. M. Blinov, M. F. Grebenkin, and A. N. Trufanov, Mol. Cryst. Liq. Cryst. 37, 47 (1976).

    Article  Google Scholar 

  29. M. I. Barnik, L. M. Blinov, M. F. Grebenkin, S. A. Pikin, and V. G. Chigrinov, Phys. Lett. A 51 (3), 175 (1975).

    Article  ADS  Google Scholar 

  30. E. I. Rjumtsev and S. G. Polushin, Liq. Cryst. 13, 623 (1993).

    Article  Google Scholar 

  31. D. P. Shcherbinin, E. A. Konshina, and D. E. Solodkov, Tech. Phys. Lett. 41, 781 (2015).

    Article  ADS  Google Scholar 

  32. A. V. Zakharov, M. N. TSvetkova, and V. G. Korsakov, Phys. Solid State 44, 1795 (2002).

    Article  ADS  Google Scholar 

  33. R. Basu and G. S. Iannacchione, Phys. Rev. E 80, 010 701(4) (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Shcherbinin.

Additional information

Original Russian Text © D.P. Shcherbinin, D.A. Vakulin, E.A. Konshina, 2016, published in Zhurnal Tekhnicheskoi Fiziki, 2016, Vol. 86, No. 7, pp. 81–86.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shcherbinin, D.P., Vakulin, D.A. & Konshina, E.A. Electric method for studying reorientation dynamics of the nematic liquid crystal director. Tech. Phys. 61, 1039–1045 (2016). https://doi.org/10.1134/S1063784216070227

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784216070227

Navigation