Skip to main content
Log in

Pioneering experiments on atomic-beam-assisted generation of drag currents in the Globus-M spherical tokamak

  • Plasma
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Research data for drag currents in the Globus-M spherical tokamak are presented. The currents are generated by injecting atomic beams of hydrogen and deuterium. Experiments were carried out in the hydrogen and deuterium plasma of the tokamak. It has a divertor configuration with a lower X-point, a displacement along the larger radius from–1.0 to–2.5 cm, and a toroidal field of 0.4 T at a plasma current of 0.17–0.23 MA. The beam is injected into the tokamak in the equatorial plane tangentially to the magnetic axis of the plasma filament with an impact diameter of 32 cm. To provide a 28-keV 0.5-MW atomic beam with geometrical sizes of 4 × 20 cm (at a power level of 1/e), an IPM-2 ion source is used. The generation of noninductive currents is detected from a rise in the loop current and a simultaneous dip of the loop voltage. The injection of the hydrogen and deuterium atomic beams into the deuterium plasma results in a noticeable and reproducible dip of the loop voltage (up to 0.5 V). Using the ASTRA transport code, a model is constructed that allows rapid calculation of noninductive currents. Calculations performed for a specific discharge confirm that the model adequately describes the effect of drag current generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Ohkawa, Nucl. Fusion 10, 185 (1970).

    Article  Google Scholar 

  2. W. H. M. Clark, et al., Phys. Rev. Lett. 45, 1101 (1980).

    Article  ADS  Google Scholar 

  3. M. Zarnstorff, et al., Phys. Rev. Lett. 60, 1306 (1988).

    Article  ADS  Google Scholar 

  4. C. Challis, et al., in Proceedings of the 14th European Conference on Controlled Fusion and Plasma Physics, Madrid, Spain, 1987, Ed. by S. Methfessel (European Physical Society, Petit-Lancy, Switzerland, 1987).

  5. T. Suzuki, R. J. Akers, D. A. Gates, et al., Nucl. Fusion 51, 083020 (2011).

    Article  ADS  Google Scholar 

  6. V. K. Gusev, V. E. Golant, E. Z. Gusakov, et al., Tech. Phys. 44, 1054 (1999).

    Article  Google Scholar 

  7. L. Spitzer, Physics of Fully Ionized Gases (Wiley, New York, 1962).

    Google Scholar 

  8. V. I. Pistunovich, Sov. J. Plasma Phys. 2, 1 (1976).

    ADS  Google Scholar 

  9. B. A. Trubnikov, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1963), Vol. 1, pp. 98–182.

    Google Scholar 

  10. D. V. Sivukhin, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1963), Vol. 4, pp. 81–187.

    Google Scholar 

  11. J. G. Cordey and M. J. Houghton, Nucl. Fusion 13, 215 (1973).

    Article  Google Scholar 

  12. J. W. Connor and J. G. Cordey, Nucl. Fusion 14, 185 (1974).

    Article  Google Scholar 

  13. V. V. Fomenko, Nucl. Fusion 15, 1091 (1975).

    Article  ADS  Google Scholar 

  14. J. G. Cordey and W. G. F. Core, Phys. Fluids 17, 1626 (1974).

    Article  ADS  Google Scholar 

  15. W. W. Heidbrink and G. J. Sadler, Nucl. Fusion 34, 535 (1994).

    Article  ADS  Google Scholar 

  16. V. K. Gusev, in Proceedings of the 25th IAEA Fusion Energy Conference, St. Petersburg, 2014, Poster No. OV/P-03.

    Google Scholar 

  17. N. N. Bakharev, in Proceedings of the 25th IAEA Fusion Energy Conference, St. Peterburg, 2014, Poster No. EX/P1-33.

    Google Scholar 

  18. Kenro Miyamoto, Fundamentals of Plasma Physics and Controlled Fusion (Iwanami Book Service Center, 1997).

    Google Scholar 

  19. D. F. H. Start, J. G. Cordey, and E. M. Jones, Plasma Phys. 22, 303 (1980).

    Article  ADS  Google Scholar 

  20. V. K. Gusev, A. V. Dech, L. A. Esipov, et al., Tech. Phys. 52, 1127 (2007).

    Article  Google Scholar 

  21. G. V. Pereverzev and P. N. Yushmanov, “ASTRA automated system for transport analysis,” Preprint No. IPP-5/98 (IPP, Garching, 2002).

    Google Scholar 

  22. V. K. Gusev, S. E. Bender, A. V. Dech, et al., Tech. Phys. 51, 987 (2006).

    Article  Google Scholar 

  23. V. K. Gusev, E. A. Azizov, A. B. Alekseev, et al., Nucl. Fusion 53, 093013 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. Shchegolev.

Additional information

Original Russian Text © P.B. Shchegolev, N.N. Bakharev, V.K. Gusev, G.S. Kurskiev, V.B. Minaev, M.I. Patrov, Yu.V. Petrov, N.V. Sakharov, 2015, published in Zhurnal Tekhnicheskoi Fiziki, 2015, Vol. 85, No. 9, pp. 62–66.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchegolev, P.B., Bakharev, N.N., Gusev, V.K. et al. Pioneering experiments on atomic-beam-assisted generation of drag currents in the Globus-M spherical tokamak. Tech. Phys. 60, 1321–1325 (2015). https://doi.org/10.1134/S1063784215090194

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784215090194

Keywords

Navigation