Skip to main content
Log in

Morphology simulation of the surface subjected to low-energy ion sputtering

  • Electron and Ion Beams, Accelerators
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A new 2D method of simulating the morphology of a surface subjected to low-energy ion sputtering with regard to sputtered material redeposition is suggested. The object of simulation is the profile of microgrooves arising on the silicon surface exposed to slow argon ions from the dense plasma of an rf induction discharge. Numerical simulation data and experimental data are in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.-B. Kim, G. Hobler, A. Steiger, A. Lugstein, and E. Bertagnolli, Nanotechnology 18, 245303 (2007).

    Article  ADS  Google Scholar 

  2. H.-B. Kim, G. Hobler, A. Steiger, A. Lugstein, and E. Bertagnolli, Nanotechnology 18, 265307 (2007).

    Article  ADS  Google Scholar 

  3. G. Hobler and D. Kovac, Nucl. Instrum. Methods Phys. Res. B 269, 1609 (2011).

    Article  ADS  Google Scholar 

  4. C. Ebm and G. Hobler, Nucl. Instrum. Methods Phys. Res. B 267, 2987 (2009).

    Article  ADS  Google Scholar 

  5. A. Mutzke, R. Schneider, and I. Bizyukov, J. Nucl. Mater. 390–391, 115 (2009).

    Article  Google Scholar 

  6. I. Bizyukov, A. Mutzke, R. Schneider, and J. Davis, Nucl. Instrum. Methods Phys. Res. B 268, 2631 (2010).

    Article  ADS  Google Scholar 

  7. W. Eckstein, Computer Simulation of Ion-Solid Interactions (Springer, Berlin, 1991).

    Book  Google Scholar 

  8. A. P. Mahorowala and H. H. Sawin, J. Vac. Sci. Technol. B 20, 1064 (2002).

    Article  Google Scholar 

  9. A. S. Shumilov and I. I. Amirov, Mikroelektronika 36, 277 (2007).

    Google Scholar 

  10. J. Lua and M. J. Kushner, J. Vac. Sci. Technol. A 19, 2652 (2001).

    Article  ADS  Google Scholar 

  11. S. Hamaguchi, A. A. Mayo, S. M. Rossnagel, D. E. Kotecki, K. R. Milkove, C. Wang, and C. E. Farrell, Jpn. J. Appl. Phys. 36, 4762 (1997).

    Article  ADS  Google Scholar 

  12. K. Sugiura, S. Takahashi, M. Amano, T. Kajiyama, M. Iwayama, Y. Asao, N. Shimomura, T. Kishi, S. Ikegawa, H. Yoda, and A. Nitayama, Jpn. Appl. Phys. 48, 08HDO2 (2009).

    Article  Google Scholar 

  13. A. Persson, F. Ericson, G. Thornell, and H. Nguyen, J. Micromech. Microeng. 21, 045014 (2011).

    Article  ADS  Google Scholar 

  14. T. Aoki, S. Chiba, J. Matsuo, I. Yamada, and J. P. Biersack, Nucl. Instrum. Methods Phys. Res. B 180, 312 (2001).

    Article  ADS  Google Scholar 

  15. S. Abdollahi-Alibeik, J. Zheng, J. P. McVittie, K. C. Saraswat, C. T. Gabriel, and S. C. Abraham, J. Vac. Sci. Technol. B 19, 179 (2001).

    Article  Google Scholar 

  16. J. R. Belen, S. Gomez, M. Kiehbauch, D. Cooperberg, and E. S. Aydil, J. Vac. Sci. Technol. A 23, 99 (2005).

    Article  ADS  Google Scholar 

  17. M. A. Sobolewski, J. K. Olthoff, Y. Wang, W. Guo, and B. Bai, J. Appl. Phys. 85, 3966 (1999).

    Article  ADS  Google Scholar 

  18. X.-Y. Liu, M. S. Daw, J. D. Kress, D. E. Hanson, V. Arunachalam, D. G. Coronell, C.-L. Lu, and A. F. Voter, Thin Solid Films 422, 141 (2002).

    Article  ADS  Google Scholar 

  19. H. Kersten, R. J. Snijkers, J. Schulze, G. M. Kroesen, H. Deutsch, and F. J. de Hoog, Appl. Phys. Lett. 64, 1496 (1994).

    Article  ADS  Google Scholar 

  20. W. Guo, B. Bai, and H. H. Sawin, J. Vac. Sci. Technol. A 27, 388 (2009).

    Article  Google Scholar 

  21. C. Steinbruchel, Appl. Phys. Lett. 55, 1960 (1989).

    Article  ADS  Google Scholar 

  22. K. Ikuse, S. Yoshimura, K. Hine, M. Kiuchi, and S. Hamaguchi, J. Phys. D: Appl. Phys. 42, 135203 (2009).

    Article  ADS  Google Scholar 

  23. M. P. Seah, and T. S. Nunney, J. Phys. D: Appl. Phys. 43, 253001 (2010).

    Article  ADS  Google Scholar 

  24. Q. Wei, K.-D. Li, J. Lian, and L. Wang, J. Phys. D: Appl. Phys. 41, 172002 (2008).

    Article  ADS  Google Scholar 

  25. Yu. V. Martynenko, A. V. Rogov, and V. I. Shul’ga, Tech. Phys. 57, 439 (2012).

    Article  Google Scholar 

  26. H. Wu and A. Anders, J. Phys. D: Appl. Phys. 43, 065206 (2010).

    Article  ADS  Google Scholar 

  27. R. Jain, R. Kasturi, and B. G. Schunck, Machine Vision (McGraw Hill, New York, 1995), Chap. 6, pp. 186–233.

    Google Scholar 

  28. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Addison-Wesley, Reading, 1993), Chap. 8.

    Google Scholar 

  29. O. L. Bandman, Sist. Inform., No. 10, 57 (2005).

    Google Scholar 

  30. A. A. Evseev and O. I. Nechaeva, Prikl. Diskret. Mat., No. 4, 72 (2009).

    Google Scholar 

  31. G. G. Malinetskii and M. E. Stepantsov, Zh. Vychisl. Mat. Mat. Fiz. 36, 1017 (1998).

    MathSciNet  Google Scholar 

  32. S. P. Zimin, I. I. Amirov, and E. S. Gorlachev, Semicond. Sci. Technol. 26, 055018 (2011).

    Article  ADS  Google Scholar 

  33. M. A. Sobolewski, J. K. Olthoff, and Y. Wang, J. Appl. Phys. 85, 3966 (1999).

    Article  ADS  Google Scholar 

  34. Y. Yamamura and H. Tawara, At. Data Nucl. Data Tables 62, 149 (1996).

    Article  ADS  Google Scholar 

  35. S. J. Chang, J. C. Arnold, G. C. H. Zau, H.-S. Shin, and H. H. Sawin, J. Vac. Sci. Technol. 15, 1853 (1997).

    Article  ADS  Google Scholar 

  36. E. A. Edelberg and E. S. Aydil, J. Appl. Phys. 86, 4799 (1999).

    Article  ADS  Google Scholar 

  37. Y.-W. Mo, J. Kleiner, M. B. Webb, and M. G. Lagally, Phys. Rev. Lett. 66, 1998 (1991).

    Article  ADS  Google Scholar 

  38. T. Doi, M. Ichikawa, S. Hosoki, and K. Ninomiya, Phys. Rev. B 53, 16609 (1996).

    Article  ADS  Google Scholar 

  39. A. G. Knyazeva and S. G. Psakh’e, Fiz. Mezomekh. 9(2), 49 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Shumilov.

Additional information

Original Russian Text © A.S. Shumilov, I.I. Amirov, 2015, published in Zhurnal Tekhnicheskoi Fiziki, 2015, Vol. 85, No. 7, pp. 112–118.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shumilov, A.S., Amirov, I.I. Morphology simulation of the surface subjected to low-energy ion sputtering. Tech. Phys. 60, 1056–1062 (2015). https://doi.org/10.1134/S1063784215070245

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784215070245

Keywords

Navigation