Skip to main content
Log in

3D fractalization over natural colloidal microinclusions

  • Physics of Nanostructures
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Results of micro- and nanodimensional investigations into fractal structures arising in mineral water sediments prepared by the drop method are presented. The qualitative analysis of attendant physical processes makes it possible to formulate conditions for 3D fractalization, which take into account the sizes of colloidal particles, their distances to the center of the drop, and the height of the drop: r min = R max = h max and r max = R min = h min. It is shown that surface tension forces and Coulomb forces make a major contribution to fractalization under normal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Lu and A. M. Sastry, IEEE Trans. Semicond. Manuf. 20, 421 (2007).

    Article  Google Scholar 

  2. R. P. Seisyan, Tech. Phys. 56, 1061 (2011).

    Article  Google Scholar 

  3. G. B. Sergeev, Ross. Khim. Zh., No. 5, 22 (2002).

    Google Scholar 

  4. S. A. Beznosyuk, Ya. V. Lerkh, and T. M. Zhukovskaya, Polzunovsk. Vestn., No. 4-1, 143 (2005).

    Google Scholar 

  5. T.-O. Nguyen, R. Martel, M. Bushey, et al., Phys. Chem. Chem. Phys., No. 9, 1515 (2007).

    Google Scholar 

  6. A. G. Marin, H. Gelderblom, A. Susarrey-Arce, et al., Proc. Natl. Acad. Sci. USA 109(41), 1 (2012).

    Article  Google Scholar 

  7. F. Kh. Mirzade, Tech. Phys. 51, 1183 (2006).

    Article  Google Scholar 

  8. A. P. Kuz’menko, V. V. Chakov, and Chan N’en Aung, Nauch. Vedom. Belgorodsk. Gos. Univ., Ser. Mat. Fiz., No. 11(154), 174 (2013).

    Google Scholar 

  9. A. P. Kuzmenko, V. V. Chakov, Chan Nyein Aung, and M. B. Dobromyslov, J. Nano- and Electron. Phys. 5, 04019 (2013).

    Google Scholar 

  10. A. A. Mohammad and A. Morsali, Nanocrystal, 237 (2011).

    Google Scholar 

  11. J. Fukuda and K. Shinoda, Phys. Chem. Miner. 35, 347 (2008).

    Article  ADS  Google Scholar 

  12. http://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi

  13. L. V. Andreeva, A. V. Koshkin, P. V. Lebedev-Stepanov, A. N. Petrov, and M. V. Alfimov, Colloids Surf., A 300, 300 (2007).

    Article  Google Scholar 

  14. E. L. Mirjam, G. C. Christina, A.-P. Hynninen, et al., Nature 437, 235 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Kuz’menko.

Additional information

Original Russian Text © A.P. Kuz’menko, Chan Nyein Aung, V.V. Rodionov, 2015, published in Zhurnal Tekhnicheskoi Fiziki, 2015, Vol. 85, No. 6, pp. 118–125.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuz’menko, A.P., Aung, C.N. & Rodionov, V.V. 3D fractalization over natural colloidal microinclusions. Tech. Phys. 60, 903–910 (2015). https://doi.org/10.1134/S1063784215060146

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784215060146

Keywords

Navigation