Skip to main content
Log in

Sensitive elements of vacuum sensors based on porous nanostructured SiO2-SnO2 sol-gel films

  • Experimental Instruments and Technique
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The objects of investigation are porous nanostructured SiO2-SnO2 sol-gel films used as sensitive elements on vacuum sensors. The properties of the films with spherical, labyrinth, and percolation mesh structures are analyzed. It is shown that the resistance of sensitive elements based on these films sharply drops at a pressure below the atmospheric value. Processes taking place in the films at subatmospheric pressures are studied. It is found that the desorption of water vapor increases the resistance of the sensitive elements of vacuum sensors, whereas the desorption of carbon dioxide and oxygen decreases the resistance. This agrees with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. D. Semkin, K. E. Voronov, A. N. Zanin, and I. V. Piyakov, Prikl. Fiz., No. 2, 108 (2006).

    Google Scholar 

  2. V. V. Goloskov, Vak. Tekh. Tekhnol. 16, 15 (2006).

    Google Scholar 

  3. V. Randjelovic Danijela, P. Frantlovic Milos, L. Miljkovic Budimir, M. Popovic Bogdan, and S. Jaksic Zoran, Vacuum 101, 118 (2014).

    Article  Google Scholar 

  4. S. J. Kim, Tech. Phys. Lett. 31, 597 (2005).

    Article  ADS  Google Scholar 

  5. S. J. Chang, T. J. Hsueh, C. L. Hsu, Yu. R. Lin, I. C. Chen, and B. R. Huang, Nanotechnology 19, 505 (2008).

    Google Scholar 

  6. V. B. Kapustyanyk, M. R. Panasyuk, B. I. Turko, Yu. G. Dubov, and R. Ya. Serkiz, Semiconductors 48, 1395 (2014).

    Article  ADS  Google Scholar 

  7. V. A. Moshnikov, I. E. Gracheva, V. V. Kuznezov, A. I. Maximov, S. S. Karpova, and A. A. Ponomareva, J. Non-Cryst. Solids 356, 2020 (2010).

    Article  ADS  Google Scholar 

  8. I. A. Pronin, D. Tz. Dimitrov, L. K. Krasteva, K. I. Papazova, I. A. Averin, A. S. Chanachev, A. S. Bojinova, A. Tz. Georgieva, N. D. Yakushova, and V. A. Moshnikov, Sens. Actuators A 206, 88 (2014).

    Article  Google Scholar 

  9. I. A. Averin, I. A. Pronin, and A. A. Karmanov, Nano Mikrosist. Tekh. 5, 23 (2013).

    Google Scholar 

  10. C. F. Brinker and G. W. Scherer, Sol-Gel Science: Physics and Chemistry of Sol-Gel Processing (Academic, San Diego, 1990).

    Google Scholar 

  11. I. E. Kononova, V. A. Moshnikov, M. B. Krishtab, and I. A. Pronin, Fiz. Khim. Stekla 40, 244 (2014).

    Google Scholar 

  12. O. A. Shilova, Fiz. Khim. Stekla 31, 270 (2005).

    Google Scholar 

  13. I. A. Pronin and M. V. Goryacheva, Surf. Coat. Technol. 235, 835 (2013).

    Article  Google Scholar 

  14. I. E. Gracheva, A. I. Maksimov, and V. A. Moshnikov, Poverkhnost’: Rentgen. Sinkhrotron. Neitron. Issled. 10, 16 (2009).

    Google Scholar 

  15. RF Patent No. 2485465 (June 20, 2013).

  16. RF Patent No. 2506659 (February 10, 2014).

  17. RF Patent No. 2505885 (January 27, 2014).

  18. A. S. Len’shin, V. M. Kashkarov, V. N. Tsipenyuk, P. V. Seredin, B. L. Agapov, D. A. Minakov, and E. P. Domashevskaya, Tech. Phys. 58, 284 (2013).

    Article  Google Scholar 

  19. S. E. Igoshina, A. A. Karmanov, and A. P. Sigaev, Molod. Uchen. 68(9), 158 (2014).

    Google Scholar 

  20. A. S. Len’shin, V. M. Kashkarov, P. V. Seredin, Yu.M. Spivak, and V. A. Moshnikov, Semiconductors 45, 1183 (2011).

    Article  ADS  Google Scholar 

  21. M. Aziz, S. S. Abbas, and W. R. W. Baharom, Mater. Lett. 91, 31 (2013).

    Article  Google Scholar 

  22. I. A. Averin, A. A. Karmanov, V. A. Moshnikov, R. M. Pecherskaya, and I. A. Pronin, Izv. Vyssh. Uchebn. Zaved. (Povolzhskii Region), Fiz.-Mat. Nauki 22, 155 (2012).

    Google Scholar 

  23. V. I. Roldugin, Usp. Khim. 72, 1027 (2003).

    Google Scholar 

  24. I. E. Gracheva, V. A. Moshnikov, and I. A. Pronin, Nanotekhnika (Nanotechnology) 9, 46 (2011).

    Google Scholar 

  25. V. A. Moshnikov, I. E. Gracheva, and M. G. An’chkov, Fiz. Khim. Stekla 37(5), 38 (2011).

    Google Scholar 

  26. S. E. Igoshina, A. A. Karmanov, and A. P. Sigaev, Molod. Uchen. 70(11), 52 (2014).

    Google Scholar 

  27. I. A. Averin, V. A. Moshnikov, and I. A. Pronin, Nano-Mikrosist. Tekh. 9, 19 (2013).

    Google Scholar 

  28. T. D. Gierke, G. E. Munn, and F. C. Wilson, J. Polymer. Sci. 19, 1688 (1981).

    Google Scholar 

  29. H. Sokry Hassan, A. B. Kashyout, H. M. A. Soliman, M. A. Uosif, and N. Afify, Appl. Surf. Sci. 277, 73 (2013).

    Article  ADS  Google Scholar 

  30. I. A. Averin, V. A. Moshnikov, and I. A. Pronin, Nano-Mikrosist. Tekh. 8, 31 (2013).

    Google Scholar 

  31. I. A. Davydov, V. A. Moshnikov, and A. A. Fedotov, Tech. Phys. Lett. 30, 727 (2004).

    Article  ADS  Google Scholar 

  32. X. J. Zheng, X. C. Cao, J. Sun, B. Yuan, Q. H. Li, Z. Zhu, and Y. Zhang, Nanotechnology 22, 501 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Averin.

Additional information

Original Russian Text © I.A. Averin, S.E. Igoshina, V.A. Moshnikov, A.A. Karmanov, I.A. Pronin, E.I. Terukov, 2015, published in Zhurnal Tekhnicheskoi Fiziki, 2015, Vol. 85, No. 6, pp. 143–147.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Averin, I.A., Igoshina, S.E., Moshnikov, V.A. et al. Sensitive elements of vacuum sensors based on porous nanostructured SiO2-SnO2 sol-gel films. Tech. Phys. 60, 928–932 (2015). https://doi.org/10.1134/S106378421506002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378421506002X

Keywords

Navigation