Skip to main content
Log in

Energy loss of charged particles colliding with an oscillator

  • Theoretical and Mathematical Physics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Energy loss of fast charged particles colliding with an oscillator is considered in the dipole approximation. In this approximation, the problem is solved exactly and the energy loss of the oscillator from the initial state |m〉 = |0〉 is found in the form of the sum of single integrals. It is shown that passing to the limit, the Bethe theory for an atom with small perturbations can be obtained, and in the case of strong fields, the correction to the Bethe theory, analogous to the Bloch correction, can be calculated; in addition, a classical limit coinciding with the Bohr formula is possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. J. Ziegler, J. Appl. Phys/Rev. Appl. Phys. 85, 1249 (1999).

    Article  ADS  Google Scholar 

  2. F. Bloch, Ann. Phys. 16, 285 (1933).

    Article  Google Scholar 

  3. J. Lindhard and A. Sorensen, Phys. Rev. A 53, 2443 (1996).

    Article  ADS  Google Scholar 

  4. V. Khodyrev, J. Phys. B 33, 5045 (2000).

    Article  ADS  Google Scholar 

  5. V. I. Matveev, D. N. Makarov, and E. S. Gusarevich, JETP Lett. 92, 281 (2010).

    Article  ADS  Google Scholar 

  6. V. I. Matveev, D. N. Makarov, and E. S. Gusarevich, JETP 112, 756 (2011).

    Article  ADS  Google Scholar 

  7. V. I. Matveev and D. N. Makarov, JETP Lett. 94, 1 (2011).

    Article  ADS  Google Scholar 

  8. A. Schinner and P. Sigmund, Nucl. Instrum. Methods Phys. Res. B 164–165, 220 (2000).

    Article  Google Scholar 

  9. P. Sigmund and U. Haagerup, Phys. Rev. A 34, 892 (1986).

    Article  ADS  Google Scholar 

  10. W. H. Barkas, W. Birnbaum, and F. M. Smith, Phys. Rev. 101, 778 (1956).

    Article  ADS  Google Scholar 

  11. H. M. Hennig and P. Sigmund, Phys. Rev. A 40, 101 (1989).

    Article  Google Scholar 

  12. V. A. Khodyrev, Nucl. Instrum. Methods Phys. Res. B 115, 332 (1996).

    Article  ADS  Google Scholar 

  13. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Pergamon, New York, 1977).

    Google Scholar 

  14. A. I. Baz’, Ya. B. Zel’dovich, and A. M. Perelomov, Scattering, Reactions and Decay in Nonrelativistic Quantum Mechanics (Nauka, Moscow, 1971).

    Google Scholar 

  15. A. M. Dykhne and G. L. Yudin, Sov. Phys. Usp. 21, 549 (1978).

    Article  ADS  Google Scholar 

  16. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 2: Special Functions (Gordon & Breach, New York, 1986).

    Google Scholar 

  17. Niels Bohr, Collected Works (North Holland, Amsterdam, 2008), Vol. 1.

  18. P. Sigmund, Phys. Rev. A 54, 3113 (1996).

    Article  ADS  Google Scholar 

  19. H. A. Bethe, Ann. Phys. (Leipzig) 5, 324 (1930).

    ADS  Google Scholar 

  20. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 1: Elementary Functions (Gordon & Breach, New York, 1986).

    MATH  Google Scholar 

  21. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 1980).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Makarov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, D.N. Energy loss of charged particles colliding with an oscillator. Tech. Phys. 60, 483–488 (2015). https://doi.org/10.1134/S1063784215040192

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784215040192

Keywords

Navigation