Skip to main content
Log in

Structure and composition of silicon microarrays subjected to cyclic insertion and extraction of lithium

  • Physical Science of Materials
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The silicon anodes for lithium-ion batteries subjected to cyclic tests of variable duration are studied by electron microscopy, energy-dispersive X-ray analysis, and Raman scattering. It is shown that the discharge capacity of electrodes based on macroporous silicon degrade due to the fracture of silicon walls and the formation of a Si-Li amorphous phase. Both effects arise early on testing. The number of cracks and the degree of disorder of the silicon crystal lattice are found to grow with the number of lithiation cycles and be nonuniformly distributed along the height of the walls. Namely, lithium is incorporated largely into the upper part of the structure adjacent to the separator. The disorder degree of the crystal lattice in the lithiated anodes is compared with that in standard amorphous silicon by analysis of the Raman spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Kasavajjula, Ch. Wang, and A. John, J. Power Sources 163, 1003 (2007).

    Article  Google Scholar 

  2. M. Ge, X. Fang, J. Rong, and C. Zhou, Nanotechnology 24, 422001 (2013).

    Article  ADS  Google Scholar 

  3. T. L. Kulova, A. M. Skundin, Yu. V. Pleskov, O. I. Kon’kov, E. I. Terukov, and I. N. Trapeznikova, Semiconductors 40, 468 (2006).

    Article  ADS  Google Scholar 

  4. C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, Nat. Nanotechnol. 3, 31 (2008).

    Article  ADS  Google Scholar 

  5. H. Foll, H. Hartz, E. K. Ossei-Wusu, J. Carstensen, and O. Riemenschneider, Phys. Status Solidi RRL 4, 4 (2010).

    Article  Google Scholar 

  6. E. V. Astrova, E. F. Fedulova, I. A. Smirnova, A. D. Remenyuk, T. L. Kulova, and A. M. Skundin, Tech. Phys. Lett. 37, 731 (2011).

    Article  ADS  Google Scholar 

  7. H. Föll, J. Carstensen, E. Ossei-Wusu, A. Cojocaru, E. Quiroga-Gonzalez, and G. Neumann, J. Electrochem. Soc. 158, A580 (2011).

    Article  Google Scholar 

  8. V. Lehmann, Electrochemistry of Silicon (Wiley-VCH, Weinheim, 2002).

    Book  Google Scholar 

  9. A. V. Chernienko, E. V. Astrova, and Yu. A. Zharova, Tech. Phys. Lett. 39, 990 (2013).

    Article  ADS  Google Scholar 

  10. G. V. Li, T. L. Kulova, V. A. Tolmachev, A. V. Chernienko, M. A. Baranov, S. I. Pavlov, E. V. Astrova, and A. M. Skundin, Semiconductors 47, 1275 (2013).

    Article  ADS  Google Scholar 

  11. Y. Ein-Eli, B. Markovsky, D. Aurbach, Y. Carmeli, H. Yamin, and S. Luski, Electrochim. Acta 39, 2559 (1994).

    Article  Google Scholar 

  12. S. V. Ovsyannikov, V. V. Shchennikov, Yu. S. Ponosov, I. V. Antonova, and S. V. Smirnov, Physica B 403, 3424 (2008).

    Article  ADS  Google Scholar 

  13. P. Unifantowicz, S. Vaucher, M. Lewandowska, and K. J. Kurzydlowski, J. Phys.: Condens. Matter. 20, 1 (2008).

    Google Scholar 

  14. S. I. Romanov and L. S. Smirnov, Fiz. Tekh. Poluprovodn. (Leningrad) 6, 1631 (1972).

    Google Scholar 

  15. N. N. Gerasimenko and A. V. Dvurechenskii, Sov. Phys. Semicond. 11, 56 (1977).

    Google Scholar 

  16. D. Beeman, R. Tsu, and M. F. Thorpe, Phys. Rev. B 32, 874 (1985).

    Article  ADS  Google Scholar 

  17. P. Danesh, B. Pantchev, K. Antonova, E. Liarokapis, B. Schmidt, D. Grambole, and J. Baran, J. Phys. D 37, 249 (2004).

    Article  ADS  Google Scholar 

  18. R. Tsu, J. G. Hernandez, and F. H. Pollak, J. Non-Cryst. Solids 66, 109 (1984).

    Article  ADS  Google Scholar 

  19. Zh. Li, W. Li, Ya. Jiang, H. Cai, Yu. Gong, and J. He, J. Raman Spectrosc. 42, 415 (2011).

    Article  ADS  Google Scholar 

  20. R. L. S. Vink, G. T. Barkema, and W. F. van der Weg, Phys. Rev. B 63, 115210–1 (2001).

    Article  ADS  Google Scholar 

  21. N. Maley, D. Beeman, and J. S. Lannin, Phys. Rev. B 38, 10611 (1988).

    Article  ADS  Google Scholar 

  22. N. M. Liao, W. Li, Y. D. Jiang, Y. J. Kuang, K. C. Qi, Z. M. Wu, and S. B. Li, Appl. Phys. A 91, 349 (2008).

    Article  ADS  Google Scholar 

  23. M. Marinov and N. Zotov, Phys. Rev. B 55, 2938 (1997).

    Article  ADS  Google Scholar 

  24. N. M. Liao, W. Li, Y. D. Jiang, Z. M. Wu, S. B. Li, Z. Liu, Z. Li, X. Jin, and Y. X. Chen, J. Phys. D 41, 205412 (2008).

    Article  ADS  Google Scholar 

  25. H. Li, X. Huang, L. Chen, G. Zhou, Z. Zhang, D. Yu, Y. J. Mo, and N. Pei, Solid State Ionics 135, 181 (2000).

    Article  Google Scholar 

  26. M. N. Obrovac and L. Christensen, Electrochem. Solid-State Lett. 7, A93 (2004).

    Article  Google Scholar 

  27. Wei-Jun Zhang, J. Power Sources 196, 877 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Astrova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astrova, E.V., Li, G.V., Parfen’eva, A.V. et al. Structure and composition of silicon microarrays subjected to cyclic insertion and extraction of lithium. Tech. Phys. 60, 531–540 (2015). https://doi.org/10.1134/S1063784215040040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784215040040

Keywords

Navigation