Skip to main content
Log in

Perfect cubic texture, structure, and mechanical properties of nonmagnetic copper-based alloy ribbon substrates

  • Solid State
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A sharp cubic texture is formed in a number of copper alloys subjected to cold deformation by rolling by 98.6–99% followed by recrystallization annealing, which opens up fresh opportunities for long thin ribbons made of these alloys to be used as substrates in the production of second-generation high-T c superconductor (2G HTSC) cables. The possibility of creating ternary alloys based on a binary Cu-30 at % Ni alloy with additional elements that harden its fcc matrix (iron, chromium) is shown. The measurements of the mechanical properties of textured ribbons made of these alloys demonstrate that their yield strength is higher than that of a textured ribbon made of pure copper by a factor of 2.5–4.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ya. D. Vishnyakov, A. A. Babareko, S. A. Vladimirov, and I. V. Egiz, Theory of Texture Formation in Metals and Alloys (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  2. Ya. D. Vishnyakov, Stacking Faults in Crystal Structure (Metallurgiya, Moscow, 1970) [in Russian].

    Google Scholar 

  3. M. A. Shtremel, Strength of Alloys, Chap. 1: Lattice Defects (MISiS, Moscow, 1999).

    Google Scholar 

  4. E. D. Specht, A. Coyal, D. F. Liee, F. A. List, D. M. Kroeger, M. Paranthaman, R. K. Williams, and D. K. Christen, Supercond. Sci. Technol. 11, 945 (1998).

    Article  ADS  Google Scholar 

  5. Second-Generation HTS Conductors, Ed. by Amit Goyal (Springer-Business Media, 2005).

    Google Scholar 

  6. D. P. Rodionov, I. V. Gervas’eva, and Yu. V. Khlebnikova, Textured Substrates from Nickel Alloys (RIO UrO RAN, Yekaterinburg, 2012) [in Russian].

    Google Scholar 

  7. B. Gallistl, R. Kirchschlager, and A. W. Hassel, Phys. Status Solidi A 209, 875 (2012).

    Article  ADS  Google Scholar 

  8. C. V. Varanasi, P. N. Barnes, and N. A. Yust, Supercond. Sci. Technol. 19, 85 (2006).

    Article  ADS  Google Scholar 

  9. A. P. Smiryagin, N. A. Smiryagin, and L. V. Belova, Industrial Nonferrous Metals and Alloys: A Handbook (Metallurgiya, Moscow, 1974) [in Russian].

    Google Scholar 

  10. M. V. Maltsev, T. A. Barsukova, and F. A. Borin, Metallography of Nonferrous Metals and Alloys (GNTI Chern. Tsvetn. Metallurg., Moscow, 1960).

    Google Scholar 

  11. I. V. Gervas’eva, Yu. V. Khlebnikova, D. P. Rodionov, E. S. Belosludtseva, V. A. Milyutin, and T. R. Suaridze, Fiz. Met. Metalloved. 114, 189 (2013).

    Google Scholar 

  12. M. A. Shtremel, Strength of Alloys, Chap. 2: Deformation (MISiS, Moscow, 1997) [in Russian].

    Google Scholar 

  13. J. L. Soubeyroux, C. E. Bruzek, A. Girard, and J. L. Jorda, IEEE Trans. Appl. Supercond. 15, 2687 (2005).

    Article  Google Scholar 

  14. V. Subramanya Sarma, J. Eickemeyer, L. Schultz, and B. Holzapfel, J. Mater. Sci. 42, 7586 (2007).

    Article  ADS  Google Scholar 

  15. C. V. Varanasi, L. Brunke, J. Burke, I. Maartense, N. Padmaja, H. Efstathiadis, A. Chaney, and P. N. Barnes, Supercond. Sci. Technol. 19, 896 (2006).

    Article  ADS  Google Scholar 

  16. A. Girard, C. E. Bruzek, J. L. Jorda, L. Ortega, and J. L. Soubeyrouxet, J. Phys.: Conf. Ser. 43, 341 (2006).

    ADS  Google Scholar 

  17. H. Tian, H. L. Suo, O. V. Mishin, Y. B. Zhang, D. Juul Jensen, J.-C. Grivel, J. Mater. Sci. 48, 4183 (2013).

    Article  ADS  Google Scholar 

  18. O. E. Osintsev and V. N. Fedorov, Copper and Copper Alloys. Russian and Foreign Grades: Reference Book (Mashinostroenie, Moscow, 2004), pp. 264–279 [in Russian].

    Google Scholar 

  19. P. C. J. Gallagher, Met. Trans. 1, 2429 (1970).

    Google Scholar 

  20. M. Khansen and K. Anderko, Structures of Binary Alloys (GNTI Chern. Tsvetn. Metallurg., Moscow, 1962) [in Russian].

    Google Scholar 

  21. I. V. Gervas’eva, D. P. Rodionov, Yu. V. Khlebnikova, and A. P. Potapov, Tech. Phys. Lett. 37, 682 (2011).

    Article  Google Scholar 

  22. D. P. Rodionov, I. V. Gervas’eva, Yu. V. Khlebnikova, V. A. Kazantsev, and V. A. Sazonova, Fiz. Met. Metalloved. 107, 198 (2009).

    Google Scholar 

  23. D. P. Rodionov, I. V. Gervas’eva, Yu. V. Khlebnikova, V. A. Kazantsev, and V. A. Sazonova, Tech. Phys. Lett. 36, 393 (2010).

    Article  ADS  Google Scholar 

  24. D. P. Rodionov, I. V. Gervas’eva, Yu. V. Khlebnikova, V. A. Kazantsev, N. I. Vinogradova, and V. A. Sazonova, Fiz. Met. Metalloved. 111, 628 (2011).

    Google Scholar 

  25. D. P. Rodionov, I. V. Gervas’eva, Yu. V. Khlebnikova, V. A. Kazantsev, and V. A. Sazonova, Fiz. Met. Metalloved. 113, 532 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Khlebnikova.

Additional information

Original Russian Text © Yu.V. Khlebnikova, D.P. Rodionov, I.V. Gervas’eva, L.Yu. Egorova, T.R. Suaridze, 2015, published in Zhurnal Tekhnicheskoi Fiziki, 2015, Vol. 85, No. 3, pp. 73–83.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khlebnikova, Y.V., Rodionov, D.P., Gervas’eva, I.V. et al. Perfect cubic texture, structure, and mechanical properties of nonmagnetic copper-based alloy ribbon substrates. Tech. Phys. 60, 389–399 (2015). https://doi.org/10.1134/S1063784215030111

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784215030111

Keywords

Navigation