Skip to main content
Log in

Analysis of the misoriented structures in the model copper-copper compound formed by explosion welding

  • Physical Science of Materials
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The existing concepts of the mechanisms of forming fragmented structures under the conditions of severe plastic deformation of crystalline solids are analytically reviewed. The translational and rotational plasticity modes that develop at micro- and mesoscopic structural levels, respectively, are sequentially taken into account. This allows us to correctly describe the morphological features of the evolution of fragmented structures, to predict misorientation spectra for various fragmentation mechanisms, and to determine the partial contribution of each mechanism in the cases where several deformation grain refinement mechanisms are involved in fragmentation. The computer simulation of deformation-induced misorientation spectra that was developed using these concepts is a new method for studying the physical nature of structure formation processes, and this method can be applied for various materials, temperature-rate deformation conditions, and technological loading schemes. As an example, we comprehensively consider the formation of fragmented structures under the extreme conditions of explosion welding of commercial-purity copper plates. A comparison of the model misorientation spectra calculated for a reference structure and the fragmented structure in the near-contact zone of the welded joint with the existing experimental data demonstrates the efficiency and reliability of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Johari and G. Thomas, Acta Metall. 12, 1153 (1964).

    Article  Google Scholar 

  2. I. G. Brodova, E. V. Shorokhov, A. N. Petrova, et al., Rev. Adv. Mater. Sci. 25, 128 (2010).

    Google Scholar 

  3. I. V. Khomskaya, E. V. Shorokhov, V. I. Zel’dovich, et al., Fiz. Met. Metalloved. 111, 639 (2011).

    Google Scholar 

  4. I. G. Brodova, A. N. Petrova, and I. G. Shirinkina, Izv. Ross. Akad. Nauk, Ser. Fiz. 76, 1378 (2012).

    Google Scholar 

  5. I. V. Khomskaya, V. I. Zel’dovich, A. Kheifets, and B. V. Litvinov, Izv. Ross. Akad. Nauk, Ser. Fiz. 76, 1364 (2012).

    Google Scholar 

  6. M. Hammerschmidt and H. Kreye, “Microstructure and bonding mechanism in explosive welding,” Shock Waves and High Strain-Rate Phenomena in Metals (Plenum, New York, 1981), pp. 961–973.

    Chapter  Google Scholar 

  7. V. I. Lysak and S. V. Kuz’min, Explosive Welding (Mashinostroenie, Moscow, 2005).

    Google Scholar 

  8. E. V. Nesterova and V. V. Rybin, in Proceedings of the 9th World Conference on Titanium, St. Petersburg, 1999, Vol. 2, pp. 768–774.

  9. V. V. Rybin, B. A. Grinberg, O. V. Antonova, O. A. Elkina, M. A. Ivanov, A. V. Inozemtsev, A. M. Patselov, and I. I. Sidorov, Fiz. Met. Metalloved. 108, 371 (2009).

    Google Scholar 

  10. B. A. Grinberg, M. A. Ivanov, V. V. Rybin, et al., Svarka Diagnostika, No. 6, 34 (2010).

    Google Scholar 

  11. J. Song, A. Kostka, M. Veehmayer, and D. Raabe, Mater. Sci. Eng., A 528, 2641 (2011).

    Article  Google Scholar 

  12. F. Findik, Mater. Des. 32, 1081 (2011).

    Article  Google Scholar 

  13. V. V. Rybin, E. A. Ushanova, S. V. Kuz’min, and V. I. Lysak, Tech. Phys. Lett. 37, 1100 (2011).

    Article  Google Scholar 

  14. V. V. Rybin, E. A. Ushanova, and N. Yu. Zolotorevskii, Tech. Phys. 58, 1304 (2013).

    Article  Google Scholar 

  15. V. V. Rybin, A. N. Vergazov, and V. A. Likhachev, Fiz. Met. Metalloved. 37, 620 (1974).

    Google Scholar 

  16. V. V. Rybin, Large Plastic Deformations and Fracture of Metals (Metallurgiya, Moscow, 1986).

    Google Scholar 

  17. J. Friedel, Dislocations (Pergamon, Oxford, 1964).

    MATH  Google Scholar 

  18. J. P. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1967).

    Google Scholar 

  19. V. V. Rybin, Vopr. Materialoved. 1, 11 (2002).

    ADS  Google Scholar 

  20. C. X. Huang, K. Wang, S. D. Wu, Z. F. Zhang, G. Y. Li, and S. X. Li, Acta Mater. 54, 655 (2006).

    Article  Google Scholar 

  21. F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena (Elsevier, New York, 2004).

    Google Scholar 

  22. S. S. Gorelik, S. V. Dobatkin, and L. M. Kaputkina, Recrystallization of Metals and Alloys (MISIS, Moscow, 2005).

    Google Scholar 

  23. H. Beladi, P. Cizek, and P. D. Hodson, Metall. Mater. Trans. A 40, 1175 (2009).

    Article  Google Scholar 

  24. O. Engler and V. Randle, Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping (CRC, Taylor, New York, 2010).

    Google Scholar 

  25. D. A. Hughes, Q. Liu, D. C. Chrzan, and N. Hansen, Acta Mater. 45, 105 (1997).

    Article  Google Scholar 

  26. D. A. Hughes and N. Hansen, Acta Mater. 45, 3871 (1997).

    Article  Google Scholar 

  27. W. Pantleon, Mater. Sci. Eng., A 319–321, 211 (2001).

    Article  Google Scholar 

  28. W. Pantleon, Mater. Sci. Eng., A 400–401, 118 (2005).

    Article  Google Scholar 

  29. E. A. Ushanova, E. V. Nesterova, S. N. Petrov, V. V. Rybin, S. V. Kuz’min, and B. A. Grinberg, Vopr. Materialoved., No. 1 (65), 110 (2011).

    Google Scholar 

  30. Terence G. Langdon, Acta Mater. 61, 7035 (2013).

    Article  Google Scholar 

  31. Y. Estrin and A. Vinogradov, Acta Mater. 61, 782 (2013).

    Article  Google Scholar 

  32. A. N. Vergazov, V. A. Likhachev, and V. V. Rybin, Fiz. Met. Metalloved. 42, 146 (1976).

    Google Scholar 

  33. V. E. Panin, Structure Levels of Plastic Deformation and Fracture (Nauka, Novosibirsk, 1990).

    Google Scholar 

  34. V. A. Likhachev and R. Yu. Khairov, Introduction to Theory of Disclinations (Leningradsk. Gos. Univ., Leningrad, 1975).

    Google Scholar 

  35. V. I. Vladimirov and A. E. Romanov, Disclination in Crystals (Nauka, Leningrad, 1986).

    Google Scholar 

  36. V. V. Rybin, N. Yu. Zolotorevskii, and I. M. Zhukovskii, Fiz. Met. Metalloved. 69, 5 (1990).

    Google Scholar 

  37. A. E. Romanov and A. L. Kolesnikova, Prog. Mater. Sci. 54, 740 (2009).

    Article  Google Scholar 

  38. V. V. Rybin, A. A. Zisman, and N. Yu. Zolotorevsky, Acta Metall. Mater. 41, 2211 (1993).

    Article  Google Scholar 

  39. A. A. Zisman and V. V. Rybin, Acta Mater. 44, 403 (1996).

    Article  Google Scholar 

  40. V. N. Perevezentsev and G. F. Sarafanov, Rev. Adv. Mater. Sci. 30, 73 (2012).

    Google Scholar 

  41. W. Pantleon, Probl. Mater. Sci. 33, 142 (2003).

    Google Scholar 

  42. V. I. Vladimirov and A. E. Romanov, Sov. Phys. Solid State 20, 1795 (1978).

    Google Scholar 

  43. A. Luft, Prog. Mater. Sci. 35, 97 (1991).

    Article  Google Scholar 

  44. V. Klemm, P. Klimanek, and M. Seeafeldt, Phys. Status Solidi A 175, 569 (1999).

    Article  ADS  Google Scholar 

  45. V. Klemm, P. Klimanek, and M. Motylenko, Mater. Sci. Eng., A 324, 174 (2001).

    Article  Google Scholar 

  46. A. Zisman, E. Nesterova, V. Rybin, and C. Teodosiu, Scr. Mater. 46, 729 (2002).

    Article  Google Scholar 

  47. A. A. Zisman, S. Van Boxel, M. Seefeldt, and P. Van Houtte, Mater. Sci. Eng., A 474, 165 (2008).

    Article  Google Scholar 

  48. B. Bay, N. Hansen, D. A. Hughes, and D. Kuhlmann-Wilsdorf, Acta Metall. Mater. 40, 205 (1992).

    Article  ADS  Google Scholar 

  49. D. A. Hughes and N. Hansen, Scr. Metall. Mater. 33, 315 (1995).

    Article  Google Scholar 

  50. A. Kelly and G. W. Groves, Crystallography and Crystal Defects (Longmans, London, 1970).

    Google Scholar 

  51. G. Wasserman and J. Grewen, Texturen Metallischer Werkstoffe (Springer, Berlin, 1962).

    Book  Google Scholar 

  52. G. I. Taylor, J. Inst. Met. 62, 307 (1938).

    Google Scholar 

  53. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1968).

    Google Scholar 

  54. D. S. Handscomb, Canad. J. Math. 10, 85 (1958).

    Article  MATH  MathSciNet  Google Scholar 

  55. J. K. Mackenzie, Biometrika 45, 229 (1958).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Rybin.

Additional information

Original Russian Text © V.V. Rybin, N.Yu. Zolotorevskii, E.A. Ushanova, 2014, published in Zhurnal Tekhnicheskoi Fiziki, 2014, Vol. 84, No. 12, pp. 81–95.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rybin, V.V., Zolotorevskii, N.Y. & Ushanova, E.A. Analysis of the misoriented structures in the model copper-copper compound formed by explosion welding. Tech. Phys. 59, 1819–1832 (2014). https://doi.org/10.1134/S106378421412024X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378421412024X

Keywords

Navigation