Skip to main content
Log in

Evaluation of the Mechanisms of Compression Hardening of Rail Steel

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Methods of modern physical materials science are used to study the evolution of structural-phase states and dislocation substructure of rail steel under uniaxial compression deformation up to 50%. The revealed fragmentation of pearlite grains becomes more expressed with increasing deformation, and the fragmentation of cementite plates with the fragment size of 15–20 nm weakly depends on the degree of deformation. The change in the scalar and excess dislocation density with increasing deformation is analyzed. Sources of internal stress fields are identified and classified. The data obtained formed the basis for a quantitative analysis of the mechanisms of hardening of rail steel at degrees of compression deformation of 15, 30, and 50%. The contributions to strengthening caused by friction of the matrix lattice, dislocation substructure, fragment boundaries, carbide particles, internal stress fields, solid-solution strengthening, and the pearlite component of the steel structure are estimated. The primary mechanism of metal hardening at the deformation of 50% is hardening by incoherent particles and elastic internal stress fields. Using the additivity principle, which assumes the independent action of each of the hardening mechanisms, the dependence of the total yield strength of rail steel on the degree of compressive deformation is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. V. Rybin, Large Plastic Deformations and Destruction of Metals (Metallurgiya, Moscow, 1986) [in Russian].

    Google Scholar 

  2. V. E. Gromov, E. V. Kozlov, V. I. Bazaikin, V. Ya. Tsellermaer, Yu. F. Ivanov, et al., Physics and Mechanics of Drawing and Forging (Nedra, Moscow, 1997) [in Russian].

    Google Scholar 

  3. V. E. Panin, V. A. Likhachev, and Yu. V. Grinyaev, Structural Levels of Deformation of Solids (Nauka, Novosibirsk, 1985) [in Russian].

    MATH  Google Scholar 

  4. D. Raabe and R. Kumar, Scr. Mater., No. 66, 634 (2012).

  5. M. K. Skakov, G. K. Uazyrkhanova, N. A. Popova, and M. Scheffler, Key Eng. Mater. 531532, 13 (2013).

  6. J. Zrnik, S. Dobatkin, G. Raab, M. Fujda, and L. Kraus, Rev. Mater. 15, 240 (2010).

    Google Scholar 

  7. R. Pan, R. Ren, C. Chen, and X. Zhao, Mater. Charact. 132, 397 (2017).

    Article  Google Scholar 

  8. A. Vinogradov and Y. Estrin, Prog. Mater. Sci. 95, 172 (2018).

    Article  Google Scholar 

  9. Yu. Ivanisenko, W. Lojkowski, R. Z. Valiev, and H.‑J. Fecht, Acta Mater. 51, 5555 (2003).

    Article  ADS  Google Scholar 

  10. H. Yahyaoui, H. Sidhom, C. Braham, and A. Baczmanski, Mater. Des. 55, 888 (2014).

    Article  Google Scholar 

  11. V. V. Veter, S. G. Zhuleikin, L. N. Ignatenko, V. V. Kovalenko, V. E. Gromov, N. A. Popova, and E. V. Kozlov, Izv. Akad. Nauk, Ser. Fiz. 67, 1375 (2003).

    Google Scholar 

  12. Y. Wang, Y. Tomota, S. Harjo, W. Gong, and T. Ohmuraa, Mater. Sci. Eng. A 676, 522 (2016).

    Article  Google Scholar 

  13. Yu. F. Ivanov, V. E. Gromov, A. A. Yuriev, V. E. Kormyshev, Yu. A. Rubannikova, and A. P. Semin, J. Mater. Res. Technol. 11, 710 (2021).

    Article  Google Scholar 

  14. A. A. Yuriev, Yu. F. Ivanov, V. E. Gromov, Yu. A. Rubannikova, M. D. Starostenkov, and P. Y. Tabakov, Structure and Properties of Lengthy Rails after Extreme Long-Term Operation (Mater. Res. Forum, Millersville, PA, 2021).

  15. Yu. F. Ivanov, A. A. Yuriev, X. Chen, V. B. Kosterev, and V. E. Gromov, Izv. AltGU, Fiz., No. 1 (117), 33 (2021).

  16. Yu. F. Ivanov, A. M. Glezer, R. V. Kuznetsov, V. E. Gromov, Yu. A. Shliarova, A. P. Semin, and R. V. Sundeev, Mater. Lett. 309, 131378 (2022).

    Article  Google Scholar 

  17. V. E. Gromov, Yu. F. Ivanov, R. S. Qin, O. A. Peregudov, K. V. Aksenova, and O. A. Semina, Mater. Sci. Technol. 33, 1473 (2017).

    Article  ADS  Google Scholar 

  18. V. E. Gromov, A. B. Yuriev, K. V. Morozov, and Y. F. Ivanov, Microstructure of Quenched Rails (ISP, Cambridge, 2016).

    Google Scholar 

  19. V. E. Gromov, A. A. Yuriev, O. A. Peregudov, S. V. Ko-novalov, Yu. F. Ivanov, A. M. Glezer, and A. P. Semin, AIP Conf. Proc. 1909, 020066 (2017).

    Article  Google Scholar 

  20. Yu. F. Ivanov, V. E. Gromov, K. V. Aksenova, R. V. Kuznetsov, V. E. Kormyshev, and E. S. Vashchuk, Deform. Razrush. Mater., No. 8, 9 (2022).

  21. K. V. Aksenova, V. E. Gromov, Yu. F. Ivanov, E. S. Vashchuk, and O. A. Peregudov, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 10, 43 (2022).

  22. F. R. Egerton, Physical Principles of Electron Microscopy (Springer Int., Basel, 2016).

    Book  Google Scholar 

  23. C. S. S. R. Kumar, Transmission Electron Microscopy. Characterization of Nanomaterials (Springer, New York, 2014).

    Book  Google Scholar 

  24. C. B. Carter and D. B. Williams, Transmission Electron Microscopy (Springer Int., Berlin, 2016).

    Book  Google Scholar 

  25. Electron Microscopy of Thin Crystals, Ed. by P. B. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley, and M. J. Whelan (Plenum, New York, 1965).

    Google Scholar 

  26. N. A. Koneva, D. V. Lychagin, L. A. Teplyakova, and E. V. Kozlov, in Experimental Study and Theoretical Description of Disclination (FTI, Leningrad, 1984), p. 161 [in Russian].

    Google Scholar 

  27. F. B. Pikering, Physical Metallurgy and Steel Processing (Metallurgiya, Moscow, 1982) [in Russian].

    Google Scholar 

  28. N. A. Koneva, S. F. Kiseleva, and N. A. Popova, Structure Evolution and Internal Stress Fields. Austenitic Steel (LAP Lambert Academic, Saarbrücken, 2017).

    Google Scholar 

  29. M. J. Yao, E. Welsch, D. Ponge, S. M. H. Haghighat, S. Sandlöbes, P. Choi, M. Herbig, I. Bleskov, T. Hickel, M. Lipinska-Chwalek, P. Shantraj, C. Scheu, S. Zaefferer, B. Gault, and D. Raabe, Acta Mater. 140, 258 (2017).

    Article  ADS  Google Scholar 

  30. L. I. Tushinskii, A. A. Bataev, and L. B. Tikhomirova, Perlite Structure and Structural Strength of Steel (Nauka, Novosibirsk, 1993) [in Russian].

    Google Scholar 

  31. B. Z. Belen’kii, B. M. Farber, and M. I. Gol’dshtein, Fiz. Met. Metalloved. 39, 403 (1975).

    Google Scholar 

  32. H. Sieurin, J. Zander, and R. Sandström, Mater. Sci. Eng. A 415, 66 (2006).

    Article  Google Scholar 

  33. T. Prnka, Metalloved. Term. Obrab. Stali., No. 7, 3 (1979).

Download references

ACKNOWLEDGMENTS

The authors are grateful to E.A. Polevoy, PhD (Eng.), for providing samples of rail steel and K.V. Aksenova, PhD (Eng.), for discussing the results.

Funding

The work was supported by the Russian Foundation for Basic Research (project no. 19-32-60001) and the RF Ministry of Science and Higher Education under the project under agreement no. 075-15-2021-709, project identifier RF-2296.61321Kh0037 (control measurements).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Popova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popova, N.A., Gromov, V.E., Ivanov, Y.F. et al. Evaluation of the Mechanisms of Compression Hardening of Rail Steel. Phys. Solid State 64, 531–537 (2022). https://doi.org/10.1134/S1063783422110087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783422110087

Keywords:

Navigation