Skip to main content
Log in

Comparing the Electrochemical Performance of Bare SnS and Cr-Doped SnS Nanoparticles Synthesized through Solvothermal Method

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

In the present study, SnS and Cr-doped SnS nanoparticles were synthesized by solvothermal method. The structural, functional, elemental, morphological, and electrochemical properties of the as-synthesized non-doped and Cr-doped SnS nanoparticles were examined using XRD, Raman, FTIR, SEM/EDX, and cyclic voltammetry analysis. The XRD results indicated a good crystallinity of the sample and confirmed the formation of the SnS nanoparticles in orthorhombic structure. The FTIR result also confirmed the functional groups present in the Cr-doped SnS nanoparticles. The well-formed SnS nanoparticles are observed as spherical shapes confirmed from the SEM analysis. EDX spectra confirmed the presence of Sn, Cr, and S elements in the Cr-doped SnS nanoparticles. The electrochemical performance of Cr-doped SnS nanoparticles shows higher specific capacitance of 375 F/g compared with 284 F/g of bare SnS nanoparticles, which confirms that Cr-doped SnS nanoparticles are promising candidate for supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. A. Starvinadis, J. M. Smith, C. A. Cattley, A. G. Cook, P. S. Grant, and A. A. R. Watt, Nanotechnology 21, 185202 (2010).

    Article  ADS  Google Scholar 

  2. S. S. Hegde, A. G. Kunjomana, K. Ramesh, K. A. Chandrasekharan, and M. Prashantha, Int. J. Soft Comput. Eng. 1, 38 (2011).

    Google Scholar 

  3. M. M. El-Nahass, H. M. Zeyada, M. S. Aziz, and N. A. El-Ghamaz, Opt. Mater. 20, 159 (2002).

    Article  ADS  Google Scholar 

  4. Y. Guo, W. Shi, Y. Zhang, L. Wang, and G. Wei, Proc. SPIE 69841, Q1 (2008).

    Google Scholar 

  5. R. Mariappan, T. Mahalingam, and V. Ponnuswamy, Optik 122, 2216 (2011).

    Article  ADS  Google Scholar 

  6. S. M. Ahmed, L. A. Latif, and A. K. Salim, J. Basrah Res. Sci. 37, 1 (2011).

    Google Scholar 

  7. G. G. Ninan, V. G. Rajeshmon, C. S. Kartha, and K. P. Vijayakumar, AIP Conf. Proc. 1591, 1440 (2014).

    Article  ADS  Google Scholar 

  8. Y. Yang, S. Cheng, and S. Lai, Adv. Mater. Res. 60, 105 (2009).

    Article  Google Scholar 

  9. K. Saminathan, Eur. J. Appl. Sci. Tech. 1, 68 (2014).

    Google Scholar 

  10. N. Koteeswara Reddy, M. Devika, and E. S. R. Gopal, Crit. Rev. Solid State Mater. Sci. 40, 359 (2015).

    Article  ADS  Google Scholar 

  11. H. Ke, W. Luo, G. Cheng, X. Tian, and Z. Pi, Micro Nano Lett. 4, 177 (2009).

    Article  Google Scholar 

  12. W. Cai, J. Hu, Y. Zhao, H. Yang, J. Wang, and W. Xiang, Adv. Powder Technol. 23, 850 (2012).

    Article  Google Scholar 

  13. S. Biswas, S. Kar, and S. Chaudhuri, Appl. Surf. Sci. 253, 9259 (2007).

    Article  ADS  Google Scholar 

  14. Q. Wu, L. Jiao, J. Du, J. Yang, L. Guo, Y. Liu, Y. Wang, and H. Yuan, J. Power Sources 239, 89 (2013).

    Article  Google Scholar 

  15. H. Hu, B. Yang, J. Zeng, and Y. Qian, Mater. Chem. Phys. 86, 233 (2004).

    Article  Google Scholar 

  16. H. Liu, Y. Su, P. Chen, and Y. Wang, J. Mol. Catal. A 378, 285 (2013).

    Article  ADS  Google Scholar 

  17. T. Srinivasa Reddy and M. C. Santhosh Kumar, Ceram. Int. 42, 12262 (2016).

    Article  Google Scholar 

  18. W. H. Hall, Proc. Phys. Soc., Sect. A 62 (359), 741 (1949).

    Google Scholar 

  19. S. Sohila, M. Rajalakshmi, C. Ghosh, A. K. Arora, and C. Muthamizhchelvan, J. Alloys Compd. 509, 5843 (2011).

    Article  Google Scholar 

  20. T. S. Reddy and M. S. Kumar, Ceram. Int. 42, 12262 (2016).

    Article  Google Scholar 

  21. M. Li, Y. Wu, T. Li, Y. Chen, H. Ding, Y. Lin, N. Pan, and X. Wang, RSC Adv. 7, 48759 (2017).

  22. Y. Xu, N. Al-Salim, and R. D. Tilley, Nanomaterials 2, 54 (2012).

    Article  Google Scholar 

  23. G. Hatui, G. C. Nayak, G. Udayabhanu, Y. Kumar Mishra, and D. Deo Pathak, New J. Chem. 41, 2702 (2017).

    Article  Google Scholar 

  24. J. Johny, S. Sepulveda-Guzman, B. Krishnan, D. A. Avellaneda, J. A. Aguilar Martinez, M. R. Anantharamand, and S. Shaji, Sol. Energy Mater. Sol. Cells 189, 53 (2019).

    Article  Google Scholar 

  25. V. Velmurugan, U. Srinivasarao, R. Ramachandran, M. Saranya, and A. N. Grace, Mater. Res. Bull. 84, 145 (2016).

    Article  Google Scholar 

  26. H. Chu, F. Zhang, L. Pei, Z. Cui, J. Shen, and M. Ye, J. Alloys Compd. 767, 583 (2018).

    Article  Google Scholar 

  27. B. G. S. Raj, J. J. Wu, A. M. Asiri, and S. Anandan, RSC Adv. 6, 33361 (2016).

  28. F. Beguin and E. Frackowiak, Supercapacitors: Materials, Systems and Applications (Wiley-VCH, Weinheim, 2013).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Dar.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dar, M.A., Govindarajan, D. & Dar, G.N. Comparing the Electrochemical Performance of Bare SnS and Cr-Doped SnS Nanoparticles Synthesized through Solvothermal Method. Phys. Solid State 63, 1343–1350 (2021). https://doi.org/10.1134/S1063783421090055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421090055

Keywords:

Navigation