Skip to main content
Log in

Electronic Structure of Thermally Oxidized Tungsten

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The electronic structure of a pure tungsten surface oxidized at an oxygen pressure of 1 Torr and a temperature of 1000 K has been in situ studied by photoelectron spectroscopy in ultrahigh vacuum. Photoemission spectra from the valence band and O 1s, O 2s, and W 4 f core levels at synchrotron excitation in the photon energy range of 80–600 eV have been analyzed. A semiconductor tungsten oxide film is found to form, which contains different oxides of tungsten with the oxidation state from 6+ to 4+. Oxides of tungsten with the oxidation state of 6+ are mainly formed on the surface; their fraction gradually decreases while moving away from the surface, while the amount of oxides of tungsten with the oxidation state of 4+ increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. H. Zheng, J. Z. Ou, M. S. Strano, R. B. Kaner, A. Mitchell, and K. Kalantar-zadeh, Adv. Funct. Mater. 21, 2175 (2011).

    Article  Google Scholar 

  2. V. R. Buch, A. K. Chawla, and S. K. Rawal, Appl. Sci. Lett. 1, 115 (2015).

    Article  Google Scholar 

  3. C. C. Mardare and A. W. Hassel, Phys. Status Solidi A 216, 1900047 (2019).

    Article  ADS  Google Scholar 

  4. E. K. H. Salje, S. Rehmann, F. Pobell, D. Morris, K. S. Knight, T. Herrmannsdörfer, and M. T. Dove, J. Phys.: Condens. Matter 9, 6563 (1997).

    ADS  Google Scholar 

  5. T. Vogt, P. M. Woodward, and B. A. Hunter, J. Solid State Chem. 144, 209 (1999).

    Article  ADS  Google Scholar 

  6. H. A. Wriedt, Bull. Alloy Phase Diagrams 10, 368 (1989).

    Article  Google Scholar 

  7. P. M. Oliver, S. C. Parker, R. G. Egdell, and F. H. Jones, J. Chem. Soc., Faraday Trans. 92, 2049 (1996).

    Article  Google Scholar 

  8. F. Wang, C. di Valentin, and G. Pacchioni, J. Phys. Chem. C 115, 8345 (2011).

    Article  Google Scholar 

  9. J. Tanga and J. Ye, J. Mater. Chem. 15, 4246 (2005).

    Article  Google Scholar 

  10. M. B. Johansson, G. Baldissera, I. Valyukh, C. Persson, H. Arwin, G. A. Niklasson, and L. Österlund, J. Phys: Condens. Matter 25, 205502 (2013).

    ADS  Google Scholar 

  11. H. Hamdi, E. K. H. Salje, P. Ghosez, and E. Bousquet, Phys. Rev. B 94, 24 (2016).

    Article  Google Scholar 

  12. I. Perez, J. C. M. Faudoa, J. R. A. Acuna, and J. T. E. Ga-lindo, Comput. Mater. Sci. 190, 110248 (2021).

    Article  Google Scholar 

  13. O. Bouvard, A. Krammer, and A. Schüler, Surf. Interface Anal. 48, 660 (2016).

    Article  Google Scholar 

  14. L. Ottaviano, F. Bussolotti, L. Lozzi, M. Passacantando, S. la Rosa, and S. Santucci, Thin Solid Films 436, 9 (2003).

    Article  ADS  Google Scholar 

  15. V. V. Ganbavle, S. V. Mohite, J. H. Kim, and K. Y. Rajpure, Curr. Appl. Phys. 15, 84 (2015).

    Article  ADS  Google Scholar 

  16. H. Simchi, B. E. McCandless, T. Meng, and W. N. Sha-farman, J. Alloys Compd. 617, 609 (2014).

    Article  Google Scholar 

  17. Y. K. Park, C. J. Lim, Y. JiIm, S. Cho, S. W. Cho, H. Lee, and H. Ogasawara, Curr. Appl. Phys. 21, 31 (2021).

    Article  ADS  Google Scholar 

  18. D. J. Palmer and P. G. Dickens, Acta Crystallogr., B 35, 2199 (1979).

    Article  Google Scholar 

  19. A. A. Bolzan, B. J. Kennedy, and C. J. Howard, Aust. J. Chem. 48, 1473 (1995).

    Article  Google Scholar 

  20. M. R. Sundberg, P.-E. Werner, and I. P. Zibrov, Z. Kristallogr. 209, 662 (1994).

    Google Scholar 

  21. V. L. Shaposhnikov, D. B. Migas, V. N. Rodin, and V. E. Borisenko, Phys. Status Solidi B 248, 1471 (2011).

    Article  ADS  Google Scholar 

  22. N. Smolentsev, M. Sikora, A. V. Soldatov, K. O. Kvash-nina, and P. Glatzel, Phys. Rev. B 84, 235113 (2011).

    Article  ADS  Google Scholar 

  23. K. Fujiwara and A. Tsukazaki, J. Appl. Phys. 125, 085301 (2019).

    Article  ADS  Google Scholar 

  24. A. Gulino, S. Parker, F. H. Jones, and R. G. Egdell, J. Chem. Soc., Faraday Trans. 92, 2137 (1996).

    Article  Google Scholar 

  25. F. H. Jones, R. G. Egdell, A. Brown, and F. R. Wondre, Surf. Sci. 374, 80 (1997).

    Article  ADS  Google Scholar 

  26. S. C. Cifuentes, M. A. Monge, and P. Pérez, Corros. Sci. 57, 114 (2012). https://doi.org/10.1016/j.corsci.2011.12.027

    Article  Google Scholar 

  27. E. A. Gulbransen and K. F. Andrew, J. Electrochem. Soc. 107, 619 (1960).

    Article  Google Scholar 

  28. C. J. Rosa, G. C. Chen, and V. K. Sikka, Z. Metallk. 71, 529 (1980).

    Google Scholar 

  29. V. N. Ageev and N. I. Ionov, Sov. Phys. Solid State 11, 2593 (1969).

    Google Scholar 

  30. U. Kh. Rasulev and E. Ya. Zandberg, Prog. Surf. Sci. 28, 181 (1988).

    Article  ADS  Google Scholar 

  31. I. Lindau and W. E. Spicer, J. Electron. Spectrosc. 3, 409 (1974).

    Article  Google Scholar 

  32. R. Sohal, C. Walczyk, P. Zaumseil, D. Wolansky, A. Fox, B. Tillack, H.-J. Müssig, and T. Schroeder, Thin Solid Films 517, 4534 (2009).

    Article  ADS  Google Scholar 

  33. F. J. Wonga and S. Ramanathan, Mater. Res. 28, 2555 (2013).

    Article  ADS  Google Scholar 

  34. K. Fujiwara and A. Tsukazaki, J. Appl. Phys. 125, 085301 (2019).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Helmholtz-Zentrum Berlin for the possibility of using synchrotron radiation beam.

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 20-02-00370. The research project was supported by the Russian–German Laboratory at BESSY II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Lapushkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dementev, P.A., Dementeva, E.V., Lapushkin, M.N. et al. Electronic Structure of Thermally Oxidized Tungsten. Phys. Solid State 63, 1153–1158 (2021). https://doi.org/10.1134/S1063783421080072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421080072

Keywords:

Navigation