Skip to main content
Log in

Electrical Properties of the Polycrystalline BiFe0.95Co0.05O3 Films

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Semiconductor BiFe0.95Co0.05O3 thin-film compounds have been synthesized by a burst technique. The film surface morphology and the effect of electronic doping via substitution of cobalt ions for trivalent iron on the optical, magnetic, and kinetic properties have been investigated in the temperature range of 77–600 K in magnetic fields of up to 12 kOe. Two electron relaxation channels have been found in the impedance spectrum in the frequency range of 0.1–1000 kHz. The negative magnetoresistance in the anomalous magnetization region and the maximum magnetoimpedance in the vicinity of the surface phase transition have been established. Using the Hall measurements, carrier types dominating in the magnetoresistance and magnetoimpedance effects have been determined. The magnetization anomalies have been explained in the model of superparamagnetic clusters and the magnetoresistance, by the carrier scattering by spin fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. H. Béa, M. Gajek, M. Bibes, and A. Barthélémy, J. Phys.: Condens. Matter 20, 434221 (2008).

    ADS  Google Scholar 

  2. S. Saremi, R. Xu, L. R. Dedon, R. Gao, A. Ghosh, A. Dasgupta, and L. W. Martin, Adv. Mater. Interfaces 5, 1700991 (2018).

    Article  Google Scholar 

  3. W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature (London, U.K.) 442, 759 (2006).

    Article  ADS  Google Scholar 

  4. Xi Chen, A. Hochstrat, P. Borisov, and W. Kleemann, Appl. Phys. Lett. 89, 202508 (2006).

    Article  ADS  Google Scholar 

  5. J. R. Teague, R. Gerson, and W. J. James, Solid State Commun. 8, 1073 (1970).

    Article  ADS  Google Scholar 

  6. P. Fischer, M. Polomska, I. Sosnowska, and M. Szymanski, J. Phys. C 13, 1931 (1980).

    Article  ADS  Google Scholar 

  7. R. Palai, R. S. Katiyar, H. Schmid, P. Tissot, S. J. Clark, J. Robertson, S. A. T. Redfern, G. Catalan, and J. F. Scott, Phys. Rev. B 77, 014110 (2008).

    Article  ADS  Google Scholar 

  8. N. Ortega, A. Kumar, P. Bhattacharya, and S. B. Majumder, Phys. Rev. B 77, 014111 (2008).

    Article  ADS  Google Scholar 

  9. S. Farokhipoor and B. Noheda, Phys. Rev. Lett. 107, 127601 (2011).

    Article  ADS  Google Scholar 

  10. P. Maksymovych, J. Seidel, Y. H. Chu, P. Wu, A. P. Baddorf, L. Q. Chen, S. I. Kalinin, and R. Ramesh, Nano Lett. 11, 1906 (2011).

    Article  ADS  Google Scholar 

  11. G. Catalan and J. F. Scott, Adv. Mater. 21, 2463 (2009).

    Article  Google Scholar 

  12. Yu. F. Popov, A. M. Kadomtseva, G. P. Vorob’ev, and A. K. Zvezdin, Ferroelectics 162, 135 (1994).

    Article  Google Scholar 

  13. Feng Yan, Guozhong Xing, Rongming Wang, and Lin Li, Sci. Rep. 5, 9128 (2015).

    Article  ADS  Google Scholar 

  14. I. Sosnowska, W. Schäfer, W. Kockelmann, K. H. Andersen, and I. O. Troyanchuk, Appl. Phys. A 74, s1040 (2002).

    Article  ADS  Google Scholar 

  15. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wutting, and R. Ramesh, Science (Washington, DC, U. S.) 299 (5613), 1719 (2003).

    Article  ADS  Google Scholar 

  16. J. Li, J. Wang, M. Wutting, R. Ramesh, N. Wang, B. Ruette, A. P. Pyatakov, A. K. Zvezdin, and D. Viehland, Appl. Phys. Lett. 84, 5261 (2004).

    Article  ADS  Google Scholar 

  17. T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M. P. Cruz, Y. H. Chu, C. Ederer, N. A. Spaldin, R. R. Das, D. M. Kim, S. H. Baek, C. B. Eom, and R. Ramesh, Nat. Mater. 5, 823 (2006).

    Article  ADS  Google Scholar 

  18. A. Ohtomo and H. Y. Hwang, Nature (London, U.K.) 427, 423 (2004).

    Article  ADS  Google Scholar 

  19. R. Jarrier, X. Marti, J. Herrero-Albillos, P. Ferrer, R. Haumont, P. Gemeiner, G. Geneste, P. Berthet, T. Schülli, P. Cevc, R. Blinc, S. S. Wong, Tae-Jin Park, M. Alexe, M. A. Carpenter, J. F. Scott, G. Catalan, and B. Dkhil, Phys. Rev. B 85, 184104 (2012).

    Article  ADS  Google Scholar 

  20. S. S. Aplesnin, V. V. Kretinin, A. N. Masyugin, O. B. Romanova, M. N. Sitnikov, O. B. Begisheva, A. I. Galyas, O. F. Demidenko, and K. I. Yanushkevich, Semicond. Sci. Technol. 34, 095007 (2019).

    Article  ADS  Google Scholar 

  21. Y. Sui, Ch. Xin, X. Zhang, Y. Wang, Y. Wang, X. Wang, Zh. Liu, B. Li, and X. Liu, J. Alloys Compd. 645 (5), 78 (2015).

    Article  Google Scholar 

  22. K. Chakrabarti, B. Sarkr, V. D. Ashok, S. S. Chaudhari, and S. K. De, J. Magn. Magn. Mater. 381, 271 (2015).

    Article  ADS  Google Scholar 

  23. V. A. Reddy, N. P. Pathak, and R. Nath, Solid State Commun. 171, 40 (2013).

    Article  ADS  Google Scholar 

  24. A. Marzouki, V. Loyau, P. Gemeiner, L. Bessais, B. Dkhil, and A. Megriche, J. Magn. Magn. Mater. 498, 166137 (2020).

    Article  Google Scholar 

  25. V. G. Shrimali, K. Gadani, K. N. Rathod, B. Rajyaguru, A. D. Joshi, D. D. Pandya, P. S. Solanki, and N. A. Shan, Mater. Chem. Phys. 228, 98 (2019).

    Article  Google Scholar 

  26. Y.-L. Zhang, N. Yan, X.-J. Wang, S. Chen, and Sh.‑H. Yang, Ferroelectrics 454, 35 (2013).

    Article  Google Scholar 

  27. O. B. Romanova, S. S. Aplesnin, M. N. Sitnikov, L. V. Udod, O. B. Begisheva, and O. F. Demidenko, J. Mater Sci. Mater. Electron. 918, 012101 (2020).

    Google Scholar 

  28. S. Yunoki, J. Hu, A. L. Malvezzi, A. Moreo, N. Furukawa, and E. Dagotto, Phys. Rev. Lett. 80, 845 (1998).

    Article  ADS  Google Scholar 

  29. N. Furukawa, J. Phys. Soc. Jpn. 63, 3214 (1994).

    Article  ADS  Google Scholar 

  30. N. Furukawa, J. Phys. Soc. Jpn. 64, 2734 (1995).

    Article  ADS  Google Scholar 

  31. Yu. A. Izyumov and Yu. N. Skryabin, Phys. Usp. 44, 109 (2001).

    Article  ADS  Google Scholar 

  32. T. Kasuya, Prog. Theor. Exp. Phys. 16, 58 (1956).

    Article  ADS  Google Scholar 

  33. Y. Tokura, A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, and N. Furukawa, J. Phys. Soc. Jpn. 63, 3931 (1994).

    Article  ADS  Google Scholar 

  34. M. Yu. Kagan and K. I. Kugel’, Phys. Usp. 44, 553 (2001).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Krasnoyarsk Regional Center for Collective Use of the Krasnoyarsk Scientific Center, Siberian Branch of the Russian Academy of Sciences for offering the opportunity to study the surface morphology of the BiFe0.95Co0.05O3 films.

Funding

This study was supported by the Russian Foundation for Basic Research and the Belarusian Republican Foundation for Basic Research, project no. 20-52-00005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. B. Romanova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanova, O.B., Kretinin, V.V., Aplesnin, S.S. et al. Electrical Properties of the Polycrystalline BiFe0.95Co0.05O3 Films. Phys. Solid State 63, 897–903 (2021). https://doi.org/10.1134/S1063783421060184

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421060184

Keywords:

Navigation