Skip to main content
Log in

On the Calculation of Optical Characteristics and Dimensional Shifts of Surface Plasmons of Spherical Bimetallic Nanoparticles

  • OPTICAL PROPERTIES
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Formulas of efficient relaxation time are obtained for the cases when the free length of electrons is less or comparable with the characteristic dimensions of metallic regions. The frequency dispersion of optical characteristics of spherical bimetallic particles is calculated near plasma resonance in the absence of quantum-size effects. Retaining the style of common description of metallic particles based on the Mie–Drude theories, the frequency dependence of electric dipole polarizability of a two-layered metallic nanosphere was analyzed. The appearance of two polarizability maxima is the result of a difference in core and shell metals. The calculations are conducted for the following particles immersed into teflon: Au@Ag, Ag@Au, Au@Pt, Pt@Au, and Pt@Pd. It is demonstrated that the optical characteristics of bimetallic particles can be controlled by means of changing their composition and volumetric metal content. Cross-sections of absorption and scattering, as well as optical radiation efficiency of the particles in a wide spectrum range are calculated. Possible temperature of bimetallic particles at the absorption of an electromagnetic wave (for the photothermal therapy of malignant tumors) is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science, New York, 2007).

    Book  Google Scholar 

  2. V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, and M. A. Iatì, J. Phys.: Condens. Matter 29, 203002 (2017).

    ADS  Google Scholar 

  3. V. I. Balykin and P. N. Melentiev, Phys. Usp. 61, 133 (2018).

    Article  ADS  Google Scholar 

  4. A. V. Korotun and A. A. Koval’, Opt. Spectrosc. 127, 1161 (2019).

    Article  Google Scholar 

  5. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhan, Nano Lett. 4, 1085 (2004).

    Article  ADS  Google Scholar 

  6. U. Schröter and A. Dereux, Phys. Rev. B 64, 125420 (2001).

    Article  ADS  Google Scholar 

  7. A. Ambrosio, B. Piccirillo, A. Sasso, and E. Santamato, Opt. Commun. 230, 337 (2004).

    Article  ADS  Google Scholar 

  8. S. Nie and S. R. Emory, Science (Washington, DC, U. S.) 275, 1102 (1997).

    Article  Google Scholar 

  9. B. Špačková, P. Wrobel, M. Bocková, and J. Homola, Proc. IEEE 104, 2380 (2016).

    Article  Google Scholar 

  10. H. A. Atwater and A. Polman, Nat. Mater. 9, 205 (2010).

    Article  ADS  Google Scholar 

  11. V. A. Milichko, A. S. Shalin, I. S. Mukhin, A. E. Kovrov, A. A. Krasilin, A. V. Vinogradov, P. A. Belov, and C. R. Simovskii, Phys. Usp. 59, 727 (2016).

    Article  ADS  Google Scholar 

  12. E. M. Larsson, C. Langhammer, I. Zorić, and B. Kasemo, Science (Washington, DC, U. S.) 326, 1091 (2009).

    Article  ADS  Google Scholar 

  13. D. J. de Aberasturi, A. B. Serrano-Montes, and L. M. Liz-Marzán, Adv. Opt. Mater. 3, 602 (2015).

    Article  Google Scholar 

  14. F. Zarrinkhat, A. F. Najafabadi, and T. Pakizeh, J. Opt. 19, 125003 (2017).

    Article  ADS  Google Scholar 

  15. C. Zhang, H. Zhao, L. Zhou, A. E. Schlather, L. Dong, M. J. McClain, D. F. Swearer, P. Nordlander, and N. J. Halas, Nano Lett. 16, 6677 (2016).

    Article  ADS  Google Scholar 

  16. C. C. Wang, Y. C. Hsueh, C. Y. Su, C. C. Kei, and T. P. Perng, Nanotechnology 26, 254002 (2015).

    Article  ADS  Google Scholar 

  17. M. M. Moskovits, I. Srnová-Šloufová, and B. Vlčková, J. Chem. Phys. 116, 10435 (2002).

    Article  ADS  Google Scholar 

  18. N. Valizade-Shahmirzadi and T. Pakizeh, Mater. Res. Express 5, 04538 (2018).

    Article  Google Scholar 

  19. S. Sompech, S. Thaomola, A. Chingsungnoen, and T. Dasri, Mater. Res. Express 6, 026201 (2019).

    Article  ADS  Google Scholar 

  20. A. V. Korotun, A. A. Koval’, V. I. Reva, and I. N. Titov, Phys. Met. Metallogr. 120, 1040 (2019).

    Article  ADS  Google Scholar 

  21. A. V. Skidanenko, L. A. Avakyan, E. A. Kozinkina, and L. A. Bugaev, Phys. Solid State 60, 2571 (2018).

    Article  ADS  Google Scholar 

  22. Z. Gao, K. Deng, X. Wang, M. Miro, and D. Tang, ACS Appl. Mater. Interfaces 6, 18243 (2014).

    Article  Google Scholar 

  23. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

    Google Scholar 

  24. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).

    Book  Google Scholar 

  25. N. I. Grigorchuk and P. M. Tomchuk, Phys. Rev. B 84, 085448 (2011).

    Article  ADS  Google Scholar 

  26. G. N. Blackman III and D. A. Genov, Phys. Rev. B 97, 115440 (2018).

    Article  ADS  Google Scholar 

  27. N. I. Grigorchuk, J. Opt. Soc. Am. B 29, 3404 (2012).

    Article  ADS  Google Scholar 

  28. V. P. Kurbatskii and V. V. Pogosov, Tech. Phys. Lett. 26, 1020 (2000).

    Article  ADS  Google Scholar 

  29. L. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Fizmatlit, Moscow, 2001; Pergamon, New York, 1984).

  30. K. Tanabe, Mater. Lett. 61, 4573 (2007).

    Article  Google Scholar 

  31. R. Ruppin, J. Phys. Chem. Solids 39, 233 (1978).

    Article  ADS  Google Scholar 

  32. M. Cini, J. Opt. Soc. Am. 71, 386 (1981).

    Article  ADS  Google Scholar 

  33. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, Appl. Opt. 22, 1099 (1983).

    Article  ADS  Google Scholar 

  34. W. E. Vargas, Appl. Opt. 56, 1266 (2017).

    Article  ADS  Google Scholar 

  35. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, Science (Washington, DC, U. S.) 302, 419 (2003).

    Article  ADS  Google Scholar 

  36. N. V. Selina, Nanotechnol. Russ. 14, 451 (2019).

    Article  Google Scholar 

  37. G. Baffou, R. Quidant, and F. J. Garcia de Abajo, ACS Nano 4, 709 (2010).

    Article  Google Scholar 

  38. K. Tanabe, J. Phys. Chem. C 112, 15721 (2008).

    Article  Google Scholar 

  39. B. M. Bolotovskii, Sov. Phys. JETP 5, 465 (1957).

    Google Scholar 

  40. M. L. Theye, Phys. Lett. A 25, 764 (1967).

    Article  ADS  Google Scholar 

  41. G. R. Henry, J. Appl. Phys. 43, 2996 (1972).

    Article  ADS  Google Scholar 

  42. I. O. Moiseev, A. A. Yushkanov, and Yu. I. Yalamov, Tech. Phys. 49, 87 (2004).

    Article  Google Scholar 

  43. A. Moroz, J. Phys. Chem. C 112, 10641 (2008).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to V.P. Kurbatskii for the discussion of work results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Korotun.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by N. Saetova

CALCULATION OF RELAXATION TIMES

CALCULATION OF RELAXATION TIMES

Surface scattering. For noble metals at room temperature (\({{\ell }^{{{\text{bulk}}}}}\) \( \simeq \) 10–100 nm, de Broglie wavelength of electrons ~0.3 nm), surface irregularities of the atomic scale are noticeable. In this regard, we assume that the electron scattering on the surface of a bimetallic spherical particle is diffuse. The condition for applying the classical approach to the description of scattering is the \(\hbar \omega \) \( \ll \) εF inequality.

Expression for probability of electron scattering by all directions at angles that lie between (θ, θ + dθ) and (φ, φ + dφ) with respect to the tangent plane of the sphere (Fig. 1) is the following:

$$dW = {{W}_{0}}\cos \theta d\theta d\varphi ,$$

θ ∈ (0, π/2), φ ∈ (0, 2π).

In fact, this is a vector averaging (free length) \(\vec {\ell }\) by all directions. For “subcritical” angles θ ≤ θ* where cosθ* = Rc/R, and for θ > θ*, the electron scatters in both metals. In this case, we write \(\vec {\ell }\) as the sum of collinear vectors \(\vec {\ell }\) = \({{\vec {\ell }}_{1}}\) + \({{\vec {\ell }}_{2}}\) + \({{\vec {\ell }}_{3}}\) and the average of the sum will be equal to the sum of the averages.

At the transformation of the vector into the following form \({{\vec {\ell }}_{1}}{\text{/}}{{{v}}_{{{\text{F}}{\text{,s}}}}}\) + \({{\vec {\ell }}_{2}}{\text{/}}{{{v}}_{{{\text{F}}{\text{,c}}}}}\) + \({{\vec {\ell }}_{3}}{\text{/}}{{{v}}_{{{\text{F}}{\text{,s}}}}}\), it direction remains the same (scattering on the metal boundary is neglected), and the only length is changed (now the dimensions of time), therefore averaging by directions is conducted in the same way.

The average relaxation time on the surface is determined as:

$${{\left\langle {\tau _{@}^{{{\text{surf}}}}} \right\rangle }_{R}} = \frac{{\int {\tau _{@}^{{{\text{surf}}}}dW} }}{{\int {dW} }}.$$
(A1)

Then,

$$\begin{gathered} {{\left\langle {\tau _{@}^{{{\text{surf}}}}} \right\rangle }_{R}} = \int\limits_0^{\theta^{*}} {\frac{{2R\sin \theta }}{{{{{v}}_{{{\text{F}}{\text{,s}}}}}}}\cos \theta d\theta } \\ + \;\int\limits_{\theta ^{*}}^{\pi /2} {\left( {\frac{{{{\ell }_{1}}}}{{{{{v}}_{{{\text{F}}{\text{,s}}}}}}} + \frac{{{{\ell }_{2}}}}{{{{{v}}_{{{\text{F}}{\text{,c}}}}}}} + \frac{{{{\ell }_{3}}}}{{{{{v}}_{{{\text{F}}{\text{,s}}}}}}}} \right)\cos \theta d\theta .} \\ \end{gathered} $$
(A2)

Solving the geometrical task, we have a quadratic equation of \(\ell _{1}^{2}\) = \(R_{{\text{c}}}^{2}\)R2 + \(2{{\ell }_{1}}R\sin \theta \) with the following solution:

$${{\ell }_{1}} = R\sin \theta - {{(R_{{\text{c}}}^{2} - {{R}^{2}}{{\cos }^{2}}\theta )}^{{1/2}}}$$

and

$${{\ell }_{2}} = ({{R}^{2}} - R_{{\text{c}}}^{2} - \ell _{1}^{2}){\text{/}}{{\ell }_{1}},\quad {{\ell }_{3}} = 2R\sin \theta - {{\ell }_{2}} - {{\ell }_{1}}.$$

Extreme transitions transforming bimetallic particles into two different monometallic ones are easier to do at this stage.

Assuming Rc, βc → 0, we have in (A2) θ* → π/2, \({{\ell }_{2}}{\text{/}}{{{v}}_{{{\text{F}}{\text{,c}}}}}\) → 0; result is the following:

$${{\left\langle {\tau _{@}^{{{\text{surf}}}}} \right\rangle }_{R}} \to R/{{{v}}_{{{\text{F}}{\text{,s}}}}}.$$

Assuming RcR, βc → 1, we have in (A2) θ* → 0, (\({{\ell }_{1}}\) + \({{\ell }_{3}}\))/\({{{v}}_{{{\text{F}}{\text{,s}}}}}\) → 0; result is the following:

$${{\left\langle {\tau _{@}^{{{\text{surf}}}}} \right\rangle }_{R}} \to R/{{{v}}_{{{\text{F}}{\text{,c}}}}}.$$

Calculating integrals in (A2) considering expressions for \({{\ell }_{1}}\), \({{\ell }_{2}}\), and \({{\ell }_{3}}\), we finally obtain:

$${{\left\langle {\tau _{@}^{{{\text{surf}}}}} \right\rangle }_{R}} \to \frac{R}{{\mathcal{A}{{{v}}_{{{\text{F}}{\text{,s}}}}}}},$$
$$\frac{1}{\mathcal{A}} = 1 + \left( {\frac{{{{{v}}_{{{\text{F}}{\text{,s}}}}}}}{{{{{v}}_{{{\text{F}}{\text{,c}}}}}}} - 1} \right)$$
(A3)
$$ \times \;\left[ {\beta _{{\text{c}}}^{{1/3}} + \frac{1}{2}(1 - \beta _{{\text{c}}}^{{2/3}})\ln \left( {\frac{{1 - \beta _{{\text{c}}}^{{1/3}}}}{{1 + \beta _{{\text{c}}}^{{1/3}}}}} \right)} \right].$$

Radiation damping. Using in formula (8)

$$\operatorname{Re} \sigma (\omega ) = \frac{{{{\sigma }_{0}}}}{{1 + {{{(\omega {{\tau }^{{\operatorname{eff} }}})}}^{2}}}},\quad {{\sigma }_{0}} = \frac{{{{e}^{2}}\bar {n}{{\tau }^{{\operatorname{eff} }}}}}{{{{m}^{{\operatorname{eff} }}}}}$$

and inequality in the area of plasma frequencies ωτeff \( \gg \) 1 and, consequently, replacement of ω → ωbp, we obtain:

$${{\left\langle {\tau _{@}^{{{\text{rad}}}}} \right\rangle }_{R}} = \frac{9}{2}{{c}^{3}}\epsilon _{{\text{m}}}^{{1/2}}{{\left\langle {\mathcal{B}{{\tau }^{{{\text{rad}}}}}} \right\rangle }_{R}},\quad \mathcal{B} = \frac{1}{{\omega _{{{\text{bp}}}}^{3}V}}.$$
(A4)

1. Case (9). Similarly to (A2), we write

$$\begin{gathered} {{\left\langle {\tau _{@}^{{{\text{rad}}}}} \right\rangle }_{R}} = \frac{9}{2}{{c}^{3}}\epsilon _{{\text{m}}}^{{1/2}}\left[ {\int\limits_0^{\theta^{*}} {{{\mathcal{B}}_{{\text{s}}}}\frac{{2R\sin \theta }}{{{{{v}}_{{{\text{F}}{\text{,s}}}}}}}\cos \theta d\theta } } \right. \\ \left. { + \;\int\limits_{\theta^{*}}^{\pi /2} {\left( {{{\mathcal{B}}_{{\text{s}}}}\frac{{{{l}_{1}}}}{{{{{v}}_{{{\text{F}}{\text{,s}}}}}}} + {{\mathcal{B}}_{{\text{c}}}}\frac{{{{l}_{2}}}}{{{{{v}}_{{{\text{F}}{\text{,c}}}}}}} + {{\mathcal{B}}_{{\text{s}}}}\frac{{{{l}_{3}}}}{{{{{v}}_{{{\text{F}}{\text{,s}}}}}}}} \right)\cos \theta d\theta } } \right]. \\ \end{gathered} $$
(A5)

Coefficient of \({{\mathcal{B}}_{{\text{c}}}}\) contains the core volume Vc = 4π\(R_{{\text{c}}}^{3}\)/3 = βcV0, and \({{\mathcal{B}}_{{\text{s}}}}\) coefficient contains the shell volume Vs = 4π(R3\(R_{{\text{c}}}^{3}\))/3 = (1 – βc)V0, where V0 = 4πR3/3 is the total volume.

2. Case (10). Then,

$$\begin{gathered} {{\left\langle {\tau _{@}^{{{\text{rad}}}}} \right\rangle }_{R}} = \frac{9}{2}{{c}^{3}}\epsilon _{{\text{m}}}^{{1/2}}\left[ {\int\limits_0^{\theta ^{*}} {{{\mathcal{B}}_{{\text{s}}}}\tau _{{\text{s}}}^{{{\text{bulk}}}}\cos \theta d\theta } } \right. \\ \left. { + \;\int\limits_{\theta^{*}}^{\pi /2} {(2{{\mathcal{B}}_{{\text{s}}}}\tau _{{\text{s}}}^{{{\text{bulk}}}} + {{\mathcal{B}}_{{\text{c}}}}\tau _{{\text{c}}}^{{{\text{bulk}}}})\cos \theta d\theta } } \right]. \\ \end{gathered} $$
(A6)

As a result of integration in (A5) and (A6), we obtain, respectively, the expressions:

$${{\left\langle {\tau _{@}^{{{\text{rad}}}}} \right\rangle }_{R}} = \frac{9}{2}\frac{{\epsilon _{{\text{m}}}^{{1/2}}}}{{{{V}_{0}}}}\frac{R}{{{{{v}}_{{{\text{F}}{\text{,s}}}}}}}\frac{{{{c}^{3}}}}{{\omega _{{{\text{bp}},{\text{s}}}}^{3}}}$$
$$ \times \;\left[ {\frac{{1 - \beta _{{\text{c}}}^{{1/3}} - \frac{1}{2}(1 - \beta _{{\text{c}}}^{{2/3}})\ln \frac{{1 - \beta _{{\text{c}}}^{{1/3}}}}{{1 + \beta _{{\text{c}}}^{{1/3}}}}}}{{1 - {{\beta }_{{\text{c}}}}}}} \right.$$
(A7)
$$\left. { + \;\frac{{{{{v}}_{{{\text{F}}{\text{,s}}}}}}}{{{{{v}}_{{{\text{F}}{\text{,c}}}}}}}\frac{{\omega _{{{\text{bp}},{\text{s}}}}^{3}}}{{\omega _{{{\text{bp}},{\text{c}}}}^{3}}}\frac{{\beta _{{\text{c}}}^{{1/3}} + \frac{1}{2}(1 - \beta _{{\text{c}}}^{{2/3}})\ln \frac{{1 - \beta _{{\text{c}}}^{{1/3}}}}{{1 + \beta _{{\text{c}}}^{{1/3}}}}}}{{{{\beta }_{{\text{c}}}}}}} \right],$$

and

$$\begin{gathered} {{\left\langle {\tau _{@}^{{{\text{rad}}}}} \right\rangle }_{R}} = \frac{9}{2}\frac{{\epsilon _{{\text{m}}}^{{1/2}}}}{{{{V}_{0}}}}\frac{{{{c}^{3}}}}{{\omega _{{bp,{\text{s}}}}^{3}}}\left[ {\frac{{[2 - {{{(1 - \beta _{{\text{c}}}^{{2/3}})}}^{{1/2}}}]\tau _{{\text{s}}}^{{{\text{bulk}}}}}}{{1 - {{\beta }_{{\text{c}}}}}}} \right. \\ \left. { + \;\frac{{\omega _{{{\text{bp}},{\text{s}}}}^{3}}}{{\omega _{{{\text{bp}},{\text{c}}}}^{3}}}\frac{{[1 - {{{(1 - \beta _{{\text{c}}}^{{2/3}})}}^{{1/2}}}]\tau _{{\text{c}}}^{{{\text{bulk}}}}}}{{{{\beta }_{{\text{c}}}}}}} \right]. \\ \end{gathered} $$
(A8)

Bulk scattering. Keeping the style of calculations in the diffuse approximation, we write:

$$\begin{gathered} {{\left\langle {\tau _{@}^{{{\text{bulk}}}}} \right\rangle }_{R}} = \int\limits_0^{\theta^{*}} {\tau _{{\text{s}}}^{{{\text{bulk}}}}\cos \theta d\theta } \\ + \;\int\limits_{\theta ^{*}}^{\pi /2} {(2\tau _{{\text{s}}}^{{{\text{bulk}}}} + \tau _{{\text{c}}}^{{{\text{bulk}}}})\cos \theta d\theta } \\ = [2 - {{(1 - \beta _{{\text{c}}}^{{2/3}})}^{{1/2}}}]\tau _{{\text{s}}}^{{{\text{bulk}}}} \\ + \;[1 - {{(1 - \beta _{{\text{c}}}^{{2/3}})}^{{1/2}}}]\tau _{{\text{c}}}^{{{\text{bulk}}}}. \\ \end{gathered} $$
(A9)

Assuming Rc, βc → 0, we should set \(\tau _{{\text{c}}}^{{{\text{bulk}}}}\) → 0. Then, \({{\left\langle {\tau _{{\text{@}}}^{{{\text{bulk}}}}} \right\rangle }_{R}}\) = \(\tau _{{\text{s}}}^{{{\text{bulk}}}}\).

Assuming Rc, βc → 1, we should set \(\tau _{{\text{s}}}^{{{\text{bulk}}}}\) → 0. Then, \({{\left\langle {\tau _{{\text{@}}}^{{{\text{bulk}}}}} \right\rangle }_{R}}\) = \(\tau _{{\text{c}}}^{{{\text{bulk}}}}\).

When the article has been written, we read the work [43] which considers classic electron scattering in a two-layer spherical particle and a critical angle is introduced in formula (37) (in our work, this is θ* in Fig. 1 and in the Appendix).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korotun, A.V., Pogosov, V.V. On the Calculation of Optical Characteristics and Dimensional Shifts of Surface Plasmons of Spherical Bimetallic Nanoparticles. Phys. Solid State 63, 122–133 (2021). https://doi.org/10.1134/S1063783421010133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421010133

Keywords:

Navigation