Skip to main content
Log in

A Decrease in the Exchange Bias Caused by an Increase in the Effective Thickness of the Copper Layer in the NiFe/Cu/IrMn Heterostructures

  • METALS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

In a series of NiFe/Cu/IrMn structures with a variable effective thickness of the nonmagnetic copper interlayer (up to its absence in the NiFe/IrMn sample), we observed a decrease in the exchange bias and coercive force with an increase in the effective thickness of the copper layer. The coalescence of copper islands when the effective thickness of the copper layer reaches 1 nm changes the contact exchange interaction between the ferromagnet and antiferromagnet in NiFe–IrMn to indirect exchange interaction through the conduction electrons of the copper layer in NiFe–Cu–IrMn. The structural quality of single-crystal ferromagnetic and antiferromagnetic layers does not change, and the magnetization reversal occurs without the participation of domains in the temperature range of 2–300 K. Simulation of the deposition dynamics demonstrates the island structure of the film at the initial stages up to an effective thickness of 1 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, and Y. Tserkovnyak, Rev. Mod. Phys. 90, 015005 (2018).

    ADS  Google Scholar 

  2. J. Y. Son, C. H. Kim, J. H. Cho, Y. H. Shin, and H. M. Jang, ACS Nano 4, 3288 (2010).

    Google Scholar 

  3. R. Stamps, J. Phys. D 33, R247 (2000).

    ADS  Google Scholar 

  4. P. Manna and S. Yusuf, Phys. Rep. 535, 61 (2014).

    ADS  Google Scholar 

  5. J. McCord, R. Mattheis, and D. Elefant, Phys. Rev. B 70, 094420 (2004).

    ADS  Google Scholar 

  6. Y. T. Chen, Nanoscale Res. Lett. 4, 90 (2008).

    ADS  Google Scholar 

  7. Y. Hu, X. Li, X. Chi, A. Du, and F. Shi, J. Phys. D 51, 055001 (2018).

    ADS  Google Scholar 

  8. T. R. Gao, Z. Shi, S. M. Zhou, R. Chantrell, P. Asselin, X. J. Bai, J. Du, and Z. Z. Zhang, J. Appl. Phys. 105, 053913 (2009).

    ADS  Google Scholar 

  9. N. P. Aley, G. Vallejo-Fernandez, R. Kroeger, B. Lafferty, J. Agnew, Y. Lu, and K. O. Grady, IEEE Trans. Magn. 44, 2820 (2008).

    ADS  Google Scholar 

  10. H. S. Jung, O. Traistaru, and H. Fujiwara, J. Appl. Phys. 95, 6849 (2004).

    ADS  Google Scholar 

  11. H. Sang, Y. W. Du, and C. L. Chien, J. Appl. Phys. 85, 4931 (1999).

    ADS  Google Scholar 

  12. J. P. King, J. N. Chapman, M. F. Gillies, and J. C. S. Kools, J. Phys. D 34, 528 (2001).

    ADS  Google Scholar 

  13. T. Q. Hung, S. Oh, B. Sinha, J. R. Jeong, D. Y. Kim, and C. G. Kim, J. Appl. Phys. 107, 09E715 (2010).

  14. L. Thomas, A. J. Kellock, and S. S. P. Parkin, J. Appl. Phys. 87, 5061 (2000).

    ADS  Google Scholar 

  15. S. Nicolodi, L. C. C. M. Nagamine, A. D. C. Viegas, J. E. Schmidt, L. G. Pereira, C. Deranlot, F. Petroff, and J. Geshev, J. Magn. Magn. Mater. 316, e97 (2007).

    ADS  Google Scholar 

  16. J. Sort, F. Garcia, B. Rodmacq, S. Auffret, and B. Dieny, J. Magn. Magn. Mater. 272–276, 355 (2004).

    ADS  Google Scholar 

  17. K. Li, Z. Guo, G. Han, J. Qiu, and Y. Wu, J. Appl. Phys. 93, 6614 (2003).

    ADS  Google Scholar 

  18. F. Spizzo, M. Tamisari, F. Chinni, E. Bonfiglioli, and L. Del Bianco, J. Magn. Magn. Mater. 421, 234 (2017).

    ADS  Google Scholar 

  19. Y. T. Chen, Y. C. Lin, S. U. Jen, J. Y. Tseng, and Y. D. Yao, J. Alloys Compd. 509, 5587 (2011).

    Google Scholar 

  20. A. Elzwawy, A. Talantsev, and C. Kim, J. Magn. Magn. Mater. 458, 292 (2018).

    ADS  Google Scholar 

  21. I. L. Castro, V. P. Nascimento, E. C. Passamani, A. Y. Takeuchi, C. Larica, M. Tafur, and F. Pelegrini, J. Appl. Phys. 113, 203903 (2013).

    ADS  Google Scholar 

  22. R. B. Morgunov, A. D. Talantsev, M. V. Bakhmet’ev, and N. V. Granovskii, Phys. Solid State 62, 1033 (2020).

    ADS  Google Scholar 

Download references

Funding

This work was supported by the Program of the President of the Russian Federation for the state support of leading scientific schools of the Russian Federation, project no. NSh-2644.2020.2. The work was performed within the framework of the state assignment of the Institute of Problems of Chemical Physics, Russian Academy of Sciences, project no. AAAAA19-119111390022-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. B. Morgunov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morgunov, R.B., Bakhmet’ev, M.V. & Talantsev, A.D. A Decrease in the Exchange Bias Caused by an Increase in the Effective Thickness of the Copper Layer in the NiFe/Cu/IrMn Heterostructures. Phys. Solid State 62, 1991–1997 (2020). https://doi.org/10.1134/S1063783420110207

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420110207

Keywords:

Navigation