Skip to main content
Log in

Exciton-Phonon Stimulated Emission in ZnO Crystalline Film at Room Temperature

  • SEMICONDUCTORS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The near-edge luminescence of zinc oxide epitaxial film grown via molecular-beam epitaxy on a sapphire substrate is studied. Upon an increase in optical excitation at room temperature, the luminescence spectrum changes radically and a new band appears with a maximum of ~3.17 eV. It has features of stimulated emission, i.e., a threshold of nonlinear growth and a narrowing of the half-width. A model of a one-dimensional amplifier and experimental data were used to calculate the gain spectrum, with maximal value being about 170 cm–1. The theoretical approaches to calculate the Mott concentration were analyzed. It is shown for the first time that the observed stimulated emission near the threshold intensity originates from the second phonon replica of the exciton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. In our calculation, the screening of electrons and holes with the same concentrations by two charged subsystems was taken into account.

REFERENCES

  1. C. Klingshirn, Phys. Status Solidi B 244, 3027 (2007).

    Article  ADS  Google Scholar 

  2. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doan, V. Avrutin, S.-J. Cho, and H. Mor-koç, J. Appl. Phys. 98, 041301 (2005).

    Article  ADS  Google Scholar 

  3. C. Klingshirn, Phys. Status Solidi B 71, 547 (1975).

    Article  ADS  Google Scholar 

  4. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, Appl. Phys. Lett. 73, 1038 (1998).

    Article  ADS  Google Scholar 

  5. S. Iwai and S. Namba, Appl. Phys. Lett. 19, 41 (1971).

    Article  ADS  Google Scholar 

  6. J. M. Hvam, Phys. Rev. B 4, 4459 (1971).

    Article  ADS  Google Scholar 

  7. T. Fischer and J. Bille, J. Appl. Phys. 45, 3937 (1974).

    Article  ADS  Google Scholar 

  8. R. Matsuzaki, H. Soma, K. Fukuoka, K. Kodama, A. Asahara, T. Suemoto, Y. Adachi, and T. Uchino, Phys. Rev. B 96, 125306 (2017).

    Article  ADS  Google Scholar 

  9. N. Vasilyev, E. N. Borisov, B. V. Novikov, I. Kh. Akopyan, and M. E. Labzovskaya, J. Lumin. 215, 116668 (2019).

    Article  Google Scholar 

  10. C. Klingshirn, R. Hauschild, J. Fallert, and H. Kalt, Phys. Rev. B 75, 115203 (2007).

    Article  ADS  Google Scholar 

  11. K. L. Shaklee, R. E. Nahory, and R. F. Leheny, J. Lumin. 7, 284 (1973).

    Article  Google Scholar 

  12. H. Priller, J. Brückner, Th. Gruber, C. Klingshirn, H. Kalt, A. Waag, H. J. Ko, and T. Yao, Phys. Status Solidi B 241, 587 (2004).

    Article  ADS  Google Scholar 

  13. B. Kim, D. Kim, C. Cho, N. Tamura, T. Yamazaki, A. Murayama, and K. Kyhm, AIP Conf. Proc. 1399, 25 (2011).

    Article  ADS  Google Scholar 

  14. A. Gadallah, K. Nomenyo, C. Couteau, D. J. Rogers, and G. Lérondel, Appl. Phys. Lett. 102, 171105 (2013).

    Article  ADS  Google Scholar 

  15. Y. Chen, N. T. Tuan, Y. Segawa, Hang-ju Ko, Soonku Hong, and T. Yao, Appl. Phys. Lett. 78, 1469 (2001).

    Article  ADS  Google Scholar 

  16. D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, T. C. Collins, W. Harsch, and G. Cantwell, Phys. Rev. B 57, 12151 (1998).

    Article  ADS  Google Scholar 

  17. B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M.  Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, Phys. Status Solidi B 241, 231 (2004).

    Article  ADS  Google Scholar 

  18. K. Thonke, Th. Gruber, N. Teofilov, R. Schönfelder, A. Waag, and R. Sauer, Phys. B (Amsterdam, Neth.) 308310, 945 (2001).

  19. Ü. Özgür, A. Teke, C. Liu, S.-J. Cho, H. Morkoç, and H. O. Everitt, Appl. Phys. Lett. 84, 3223 (2005).

    Article  ADS  Google Scholar 

  20. D. S. Wiersma and A. Lagendijk, Phys. Rev. E 54, 4256 (1996).

    Article  ADS  Google Scholar 

  21. R. Zimmermann, Phys. Status Solidi B 146, 371 (1988).

    Article  ADS  Google Scholar 

  22. P. Vashishta and R. K. Kalia, Phys. Rev. B 25, 6492 (1982).

    Article  ADS  Google Scholar 

  23. S. Klingshirn, Semiconductor Optics, 3rd ed. (Springer, Berlin, 2007), p. 534.

    Book  Google Scholar 

  24. P. Debye and E. Hückel, Phys. Z. 24, 305 (1923).

    Google Scholar 

  25. W. A. Albers, Phys. Rev. Lett. 23, 410 (1969).

    Article  ADS  Google Scholar 

  26. D. Magde and H. Mahr, Phys. Rev. Lett. 24, 890 (1970).

    Article  ADS  Google Scholar 

  27. J. M. Hvam, Solid State Commun. 12, 95 (1973).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The research was carried on the equipment of the resource centers “Optical and Laser Methods for Study of Substance,” “Nanotechnology,” and “X-ray Diffraction Methods of Research” of the Science Park at St. Petersburg State University. The sample was kindly provided by S.V. Ivanov’s laboratory staff at the Ioffe Physical-Technical Institute of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Vasilyev.

Ethics declarations

Authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilyev, N.N., Borisov, E.N. & Novikov, B.V. Exciton-Phonon Stimulated Emission in ZnO Crystalline Film at Room Temperature. Phys. Solid State 62, 1774–1779 (2020). https://doi.org/10.1134/S1063783420100352

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420100352

Keywords:

Navigation