Skip to main content
Log in

Optical Properties of YFe2 and TbFe2 Compounds

  • METALS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The ellipsometric studies of the optical properties of intermetallic YFe2 and TbFe2 compounds have been performed in the wavelength range 0.22–15 μm, and a number of electronic and spectral characteristics have been determined. The nature of the interband light absorption in these materials is discussed based on a comparative analysis of the experimental and theoretical spectra of the optical conductivity. The experimental optical conductivities of the compounds in the region of quantum electron transitions are shown to agree qualitatively with the spectra calculated from the densities of electronic states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. K. A. Gschneidner and V. K. Pecharsky, Ann. Rev. Mater. Sci. 30, 387 (2000).

    Article  ADS  Google Scholar 

  2. G. Engdahl, Handbook of Giant Magnetostrictive Materials (Academic, New York, 2000).

    Google Scholar 

  3. K. Aoki, H.-W. Li, and K. Ishikawa, J. Alloys Compd. 404–406, 559 (2005).

    Article  Google Scholar 

  4. W. J. Ren, J. L. Yang, B. Li, D. Li, X. G. Zhao, and Z. D. Zhang, Phys. B: Condens. Matter 404, 3410 (2009).

    Article  ADS  Google Scholar 

  5. F. Pourarian, Phys. B: Condens. Matter 321, 18 (2002).

    Article  ADS  Google Scholar 

  6. V. Paul-Boncour, J. Alloys Compd. 367, 185 (2004).

    Article  Google Scholar 

  7. J. J. Rhyne, AIP Conf. Proc. 29, 182 (1976).

    Article  ADS  Google Scholar 

  8. A. S. Andreenko, K. P. Belov, S. A. Nikitin, and A. M. Tishin, Sov. Phys. Usp. 32, 649 (1989).

    Article  ADS  Google Scholar 

  9. B. Konar, J. Kim, and I.-H. Jung, J. Phase Equilib. Diffus. 38, 509 (2017).

    Article  Google Scholar 

  10. S. J. Lee, R. J. Lange, P. C. Canfield, B. N. Harmon, and D. W. Lynch, Phys. Rev. B 61, 9669 (2000).

    Article  ADS  Google Scholar 

  11. J. Y. Rhee, J. Phys.: Condens. Matter 10, 4307 (1998).

    ADS  Google Scholar 

  12. S. F. Matar, Prog. Solid State Chem. 38, 1 (2010).

    Article  ADS  Google Scholar 

  13. Y. J. Tang, J. Magn. Magn. Mater. 167, 245 (1997).

    Article  ADS  Google Scholar 

  14. D. Wang, L. Ma, Y. B. Guo, and X. Zhou, Mater. Res. Express 4, 126106 (2017).

    Article  ADS  Google Scholar 

  15. R. Tetean, E. Burzo, I. G. Deac, V. Pop, and D. Benea, J. Magn. Magn. Mater. 316, e387 (2007).

    Article  ADS  Google Scholar 

  16. A. Bentouaf, R. Mebsout, H. Rached, S. Amari, A. H. Reshak, and B. Aïssa, J. Alloys Compd. 689, 885 (2016).

    Article  Google Scholar 

  17. A. H. Reshak, J. Magn. Magn. Mater. 422, 287 (2017).

    Article  ADS  Google Scholar 

  18. V. Paul-Boncour and S. F. Matar, Phys. Rev. B 70, 184435 (2004).

    Article  ADS  Google Scholar 

  19. N. Moulay, H. Rached, M. Rabah, S. Benalia, D. Rached, A. H. Reshak, N. Benkhettou, and P. Ruterana, Comput. Mater. Sci. 73, 56 (2013).

    Article  Google Scholar 

  20. R. Sharma and Y. Sharma, J. Supercond. Nov. Magn. 30, 1003 (2017).

    Article  Google Scholar 

  21. F. Z. Mohammad, S. Yehia, and S. H. Aly, Int. J. Phys. Appl. 2, 135 (2010).

    Google Scholar 

  22. L. Braicovich, F. Ciccacci, E. Puppin, M. Sancrotti, and E. Vescovo, Solid State Commun. 79, 379 (1991).

    Article  ADS  Google Scholar 

  23. V. V. Nemoshkalenko, V. N. Uvarov, and S. V. Borisenko, J. Electron. Spectrosc. Relat. Phenom. 76, 641 (1995).

    Article  Google Scholar 

  24. E. Yáñez-Terrazas, V. Gallegos-Orozco, J. A. Matutes-Aquino, M. T. Ochoa-Lara, and E. Espinosa-Magaña, Adv. Mater. Res. 68, 89 (2009).

    Article  Google Scholar 

  25. W. Zhang, J. M. Park, S. J. Lee, A. O. Pecharsky, and K. A. Gschneidner, J. Magn. Magn. Mater. 267, 197 (2003).

    Article  ADS  Google Scholar 

  26. J. A. Chelvane, S. Kasiviswanathan, M. V. Rao, and G. Markandeyulu, Bull. Mater. Sci. 27, 169 (2004).

    Article  Google Scholar 

  27. R. Coehoorn, Phys. Rev. B 39, 13072 (1989).

    Article  ADS  Google Scholar 

  28. A. V. Sokolov, Optical Properties of Metals (GIFML, Moscow, 1961) [in Russian].

    Google Scholar 

  29. I. I. Mazin, D. J. Singh, and C. Ambrosch-Draxl, Phys. Rev. B 59, 411 (1999).

    Article  ADS  Google Scholar 

Download references

Funding

This work was performed in the framework of state task of the Ministry of Education and Science of the Russian Federation (theme “Electron,” no. AAAA-A18-118020190098-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Knyazev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knyazev, Y.V., Kuz’min, Y.I. Optical Properties of YFe2 and TbFe2 Compounds. Phys. Solid State 62, 1132–1135 (2020). https://doi.org/10.1134/S1063783420070094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420070094

Keywords:

Navigation