Skip to main content
Log in

Crystallization Features of Rapidly Quenched Ti50Ni20Cu30 Amorphous Alloys after High-Pressure Torsion

  • METALS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The effect of severe plastic deformation under high-pressure torsion (HPT) on the structural properties of rapidly quenched alloys belonging to the quasi-binary TiNi–TiCu system containing 30 at % of copper was studied. The studies were performed by scanning electron microscopy, X-ray diffraction analysis, and differential scanning calorimetry. Structural studies have demonstrated that the high-pressure torsion of the amorphous Ti50Ni20Cu30 alloy leads to the partial nanocrystallization of its amorphous state. An increase in the strain value leads to an appreciable change in the character of crystallization in the DSC curves. The crystallization peaks split in the region of lower temperatures; i.e., the regions of possible low-temperature crystallization are formed. It has been established that high-pressure torsion decreases the crystallization heat of alloys with a high copper content after heating with respect to their initial amorphous state obtained after melt quenching. After DSC crystallization, the structure heterogeneous in a specimen cross section with stratification of its structural elements by sizes was formed in the alloy. The structure formed in the regions of the partial nanocrystallization of the amorphous state after crystallization was more finely grained than the structure in the major specimen volume. The obtained results convincingly demonstrate the effect of high-pressure torsion on the formation of a crystalline structure from the amorphous Ti50Ni20Cu30 alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. G. Karthik, B. Kashyap, and T. R. Prabhu, Mater. Today: Proc. 4, 3581 (2017).

    Google Scholar 

  2. Q. Sun, R. Matsui, K. Takeda, and E. A. Pieczyska, Advances in Shape Memory Materials (AG Springer, Berlin, 2017), p. 245.

    Book  Google Scholar 

  3. J. M. Jani, M. Leary, A. Subic, and M. A. Gibson, Mater. Des. 56, 1078 (2014).

    Article  Google Scholar 

  4. B. C. L. Pedro and A. S. Marcelo, Aerospace Sci., Technol. 76, 155 (2018).

    Article  Google Scholar 

  5. R. Kedare, V. Nanavare, S. Sharma, A. Midathada, and U. K. Ravella, Mater. Today: Proc. 5, 28313 (2018).

    Google Scholar 

  6. N. Choudhary and D. Kaur, Sens. Actuators, A 242, 162 (2016).

    Article  Google Scholar 

  7. C. Velmurugan, V. Senthilkumar, S. Dinesh, and D. Arulkirubakaran, Mater. Today: Proc. 5, 14597 (2018).

    Google Scholar 

  8. A. Shelyakov, N. Sitnikov, A. Menushenkov, and V. Fo-minski, Acta Phys. Polon. 134, 708 (2018).

    Article  Google Scholar 

  9. S. P. Belyaev, V. V. Istomin-Kastrovskiy, V. V. Koledov, D. S. Kuchin, and S. E. Ivanov, Phys. Proc. 10, 39 (2010).

    Article  ADS  Google Scholar 

  10. N. Sitnikov, A. Shelyakov, R. Rizakhanov, N. Mitina, and I. Khabibullina, Mater. Today: Proc. 4, 4680 (2017).

    Google Scholar 

  11. N. N. Sitnikov, A. V. Shelyakov, I. A. Khabibullina, and K. A. Borodako, Bull. Russ. Acad. Sci.: Phys. 82, 1106 (2018).

    Article  Google Scholar 

  12. A. V. Shelyakov, N. N. Sitnikov, A. P. Menushenkov, V. V. Koledov, and A. I. Irjak, Thin Solid Films 519, 5314 (2011).

    Article  ADS  Google Scholar 

  13. A. Shelyakov, N. Sitnikov, I. Khabibullina, N. Tabachkova, V. Fominski, and N. Andreev, Mater. Lett. 248, 48 (2019).

    Article  Google Scholar 

  14. A. M. Glezer, L. S. Metlov, R. V. Sundeev, and A. V. Shalimova, JETP Lett. 105, 332 (2017).

    Article  ADS  Google Scholar 

  15. K. Edalati and Z. Horita, Mater. Sci. Eng. A 652, 325 (2016).

    Article  Google Scholar 

  16. R. V. Sundeev, A. V. Shalimova, A. A. Veligzhanin, A. M. Glezer, and Y. V. Zubavichus, Mater. Lett. 214, 115 (2018).

    Article  Google Scholar 

  17. A. Lukyanova, N. Kuranova, A. Pushin, V. Pushin, and D. Gunderov, Mater. Today: Proc. 4, 4846 (2017).

    Google Scholar 

  18. A. M. Glezer, R. V. Sundeev, and A. V. Shalimova, Rev. Adv. Mater. Sci. 54, 93 (2018).

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research (project no. 18-02-00805 A) and the Russian Science Foundation (project no. 19-72-00145).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Sitnikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sitnikov, N.N., Shelyakov, A.V., Sundeev, R.V. et al. Crystallization Features of Rapidly Quenched Ti50Ni20Cu30 Amorphous Alloys after High-Pressure Torsion. Phys. Solid State 62, 733–738 (2020). https://doi.org/10.1134/S1063783420050285

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420050285

Keywords:

Navigation