Skip to main content
Log in

Theoretical Approach to Investigation of the Magnetic and Magnetocaloric Properties of Heusler Ni–Mn–Ga Alloys

  • MAGNETISM
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The magnetic and magnetocaloric properties of Heusler Ni2 + xMn1 – xGa alloys (x = 0.16, 0.18, and 0.3) have been studied using a model based on the Malygin theory of smeared phase transitions, the Bean–Rodbell theory of first-order phase transitions, and the mean-field theory. The temperature dependences of strain, magnetization, and isothermal change in entropy of these alloys have been analyzed. It is shown that the largest change in the magnetic entropy is observed in a Ni2.18Mn0.82Ga alloy, in which the martensitic transition is accompanied by a change in the magnetic ordering. The smallest change in the entropy is observed in a Ni2.3Mn0.7Ga alloy, which exhibits the magnetocaloric effect in a martensitic phase with a change in the magnetic ordering. However, the refrigeration capacity of this alloy is twice as high as that of the other considered compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. K. A. Gschneidner, Jr., V. V. Pecharsky, and A. O. Tsokol, Rep. Prog. Phys. 68, 1479 (2005).

    Article  ADS  Google Scholar 

  2. K. A. Gschneidner, Jr. and V. V. Pecharsky, Int. J. Refrig. 31, 945 (2008).

    Article  Google Scholar 

  3. A. Planes, Ll. Mañosa, and M. Acet, J. Phys.: Condens. Matter 21, 233201 (2009).

    ADS  Google Scholar 

  4. V. Franco, J. S. Blázquez, B. Ingalge, and A. Conde, Ann. Rev. Mater. Res. 42, 305 (2012).

    Article  ADS  Google Scholar 

  5. N. A. de Oliveira, P. J. von Ranke, and A. Troper, Int. J. Refrig. 37, 237 (2014).

    Article  Google Scholar 

  6. X. Moya, S. Kar-Narayan, and N. D. Mathur, Nat. Mater. 13, 439 (2014).

    Article  ADS  Google Scholar 

  7. V. V. Khovaylo, V. V. Rodionova, S. N. Shevyrtalov, and V. Novosad, Phys. Status Solidi B 251, 2104 (2014).

    Article  ADS  Google Scholar 

  8. O. Tegus, E. Brück, L. Zhang, Dagula, K. H. J. Buschow, and F. R. de Boer, Phys. B (Amsterdam, Neth.) 319, 174 (2002).

  9. V. K. Pecharsky and K. A. Gshneidner, Jr., Phys. Rev. Lett. 78, 4494 (1997).

    Article  ADS  Google Scholar 

  10. V. K. Pecharsky and K. A. Gshneidner, Jr., J. Appl. Phys. 86, 565 (1999).

    Article  ADS  Google Scholar 

  11. Ö. Çakir and M. Acet, Appl. Phys. Lett. 100, 202404 (2012).

    Article  ADS  Google Scholar 

  12. H. Wada and Y. Tanabe, Appl. Phys. Lett. 79, 3302 (2001).

    Article  ADS  Google Scholar 

  13. N. T. Trung, V. Biharie, L. Zhang, L. Caron, K. H. J. Buschow, and E. Brück, Appl. Phys. Lett. 96, 162507 (2010).

    Article  ADS  Google Scholar 

  14. D. T. Cam Thanh, E. Brück, N. T. Trung, J. C. P. Klaasse, K. H. J. Buschow, Z. Q. Ou, O. Tegus, and L. Caron, J. Appl. Phys. 103, 07B318 (2008).

  15. S. Fujieda, A. Fujita, and K. Fukamichi, Appl. Phys. Lett. 81, 1276 (2002).

    Article  ADS  Google Scholar 

  16. P. Entel, M. E. Gruner, and A. Dannenberg, Mater. Sci. Forum 635, 3 (2010).

    Article  Google Scholar 

  17. V. D. Buchelnikov and V. V. Sokolovskiy, Phys. Met. Metallogr. 112, 633 (2011).

    Article  ADS  Google Scholar 

  18. V. V. Sokolovskiy, M. A. Zagrebin, and V. D. Buchelnikov, Mater. Sci. Found. 81, 38 (2015).

    Article  Google Scholar 

  19. L. Pareti, M. Solzi, F. Albertini, and A. Paoluzi, Eur. Phys. J. B 32, 303 (2003).

    Article  ADS  Google Scholar 

  20. F. X. Hu, B. G. Shen, J. R. Sun, and G. H. Wu, Phys. Rev. B 64, 132412 (2001).

    Article  ADS  Google Scholar 

  21. V. V. Khovailo, K. Oikawa, T. Abe, and T. Takagi, J. Appl. Phys. 93, 8483 (2003).

    Article  ADS  Google Scholar 

  22. I. E. Dikshtein, D. I. Ermakov, V. V. Koledov, L. V. Koledov, T. Takagi, A. A. Tulaikova, A. A. Cherechukin, and V. G. Shavrov, JETP Lett. 72, 373 (2000).

    Article  ADS  Google Scholar 

  23. V. A. Chernenko, E. Cesari, V. V. Kokorin, and I. N. Vitenko, Scr. Met. Mater. 33, 1239 (1995).

    Article  Google Scholar 

  24. G. A. Malygin, Phys. Usp. 44, 173 (2001).

    Article  ADS  Google Scholar 

  25. C. P. Bean and D. S. Rodbell, Phys. Rev. 126, 104 (1962).

    Article  ADS  Google Scholar 

  26. R. Zach, M. Guillot, and J. Tobola, J. Appl. Phys. 83, 7237 (1998).

    Article  ADS  Google Scholar 

  27. R. Abeyaratne, S.-J. Kim, and J. K. Knowles, Int. J. Solids Struct. 31, 2229 (1994).

    Article  Google Scholar 

  28. S. Fabbrici, G. Porcari, F. Cugini, M. Solzi, J. Kamarad, Z. Arnold, R. Cabassi, and F. Albertini, Entropy 16, 2204 (2014).

    Article  ADS  Google Scholar 

  29. V. V. Khovaylo, V. D. Buchelnikov, R. Kainuma, V. V. Koledov, M. Ohtsuka, V. G. Shavrov, T. Takagi, S. V. Taskaev, and A. N. Vasiliev, Phys. Rev. B 72, 224408 (2005).

    Article  ADS  Google Scholar 

  30. A. A. Cherechukin, T. Takagi, M. Matsumoto, and V. D. Buchel’nikov, Phys. Lett. A 326, 146 (2004).

    Article  ADS  Google Scholar 

  31. Q.-M. Hu, Ch.-M. Li, R. Yang, S. E. Kulkova, D. I. Bazhanov, B. Johansson, and L. Vitos, Phys. Rev. B 79, 144112 (2009).

    Article  ADS  Google Scholar 

  32. V. A. Chernenko, V. A. L’vov, S. P. Zagorodnyuk, and T. Takagi, Phys. Rev. B 67, 064407 (2003).

    Article  ADS  Google Scholar 

  33. V. Khovaylo, V. Koledov, V. Shavrov, A. Korolyov, K. Skokov, M. Ohtsuka, H. Miki, and T. Takagi, in Proceedings of 2nd IIFIIR International Conference on Magnetic Refrigeration at Room Temperature, Portoroz, Slovenia, April 11–13,2007, p. 217.

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 18-32-00507 mol_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Miroshkina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miroshkina, O.N., Sokolovskiy, V.V., Zagrebin, M.A. et al. Theoretical Approach to Investigation of the Magnetic and Magnetocaloric Properties of Heusler Ni–Mn–Ga Alloys. Phys. Solid State 62, 785–792 (2020). https://doi.org/10.1134/S1063783420050182

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420050182

Keywords:

Navigation