Skip to main content
Log in

Stationary States of Single-Side Hydrogenated Graphene Sheets Disposed on Planar Substrates

  • GRAPHENES
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The stationary states of partially single-side hydrogenated graphene sheets lying on planar substrates have been studied. Such sheets are shown can have stable planar and various scrolled structures. The maximum hydrogenation density, at which the planar structure remains energetically preferable, is monotonically dependent on the value of adhesion of the sheet with the substrate. The higher the interaction energy with substrate, the higher is the maximum possible the hydrogenation density of the sheet. For substrate prepared of the crystal ice surface, the maximum concentration of attached hydrogen atoms (the maximum hydrogenation density) p = 0.12; on the other hand, p = 0.21 for graphite, p = 0.28 for silicon carbide, and p = 0.48 for nickel. The simulation performed in this work enables the conclusion that the maximum hydrogenation of a graphene sheet (a single hydrogen atom per two carbon atoms) and the production a graphone sheet from it from it are possible only when the sheet is disposed on the crystal nickel surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science (Washington, DC, U.S.) 306, 666 (2004).

    Article  ADS  Google Scholar 

  2. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  ADS  Google Scholar 

  3. C. Soldano, A. Mahmood, and E. Dujardin, Carbon 48, 2127 (2010).

    Article  Google Scholar 

  4. A. L. Ivanovskii, Russ. Chem. Rev. 81, 571 (2012).

    Article  ADS  Google Scholar 

  5. Q. Peng, A. K. Dearden, J. Crean, L. Han, S. Liu, X. Wen, and S. De, Nanotechnol. Sci. Appl. 7, 1 (2014).

    Article  Google Scholar 

  6. J. O. Sofo, A. S. Chaudhari, and G. D. Barber, Phys. Rev. B 75, 153401 (2007).

    Article  ADS  Google Scholar 

  7. D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, Science (Washington, DC, U.S.) 323, 610 (2009).

    Article  ADS  Google Scholar 

  8. J. Zhou, Q. Wang, Q. Sun, X. C. Chen, Y. Kawazoe, and P. Jena, Nano Lett. 9, 3867 (2009).

    Article  ADS  Google Scholar 

  9. R. Balog, B. Jorgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lagsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T. G. Pedersen, P. Hofmann, and L. Hornekar, Nat. Mater. 9, 315 (2010).

    Article  ADS  Google Scholar 

  10. W. Zhao, J. Gebhardt, F. Spüth, K. Gotterbarm, C. Gleichweit, H.-P. Steinrück, A. Görling, and C. Papp, Chem.-Eur. J. 21, 3347 (2015).

    Article  Google Scholar 

  11. P. Ruffieux, O. Gröning, M. Bielmann, P. Mauron, L. Schlapbach, and P. Gröning, Phys. Rev. B 66, 245416 (2002).

    Article  ADS  Google Scholar 

  12. Q. X. Pei, Y. W. Zhang, and V. B. Shenoy, Carbon 48, 898 (2010).

    Article  Google Scholar 

  13. C. D. Reddy, Y. W. Zhang, and V. B. Shenoy, Nanotechnology 23, 165303 (2012).

    Article  ADS  Google Scholar 

  14. Z. Liu, Q. Xue, Y. Tao, X. Li, T. Wu, Y. Jin, and Z. Zhang, Phys. Chem. Chem. Phys. 17, 3441 (2014).

    Article  Google Scholar 

  15. A. V. Savin and M. A. Mazo, Phys. Solid State 59, 1260 (2017).

    Article  ADS  Google Scholar 

  16. C. F. Woellner, P. A. S. Autreto, and D. S. Galvao, a-rXiv:1606.09235 [cond-mat.mes-hall] (2016).

  17. C. F. Woellner, P. A. S. Autreto, and D. S. Galvao, MRS Adv. 1, 1429 (2016).

    Article  Google Scholar 

  18. A. V. Savin, Y. S. Kivshar, and B. Hu, Phys. Rev. B 82, 195422 (2010).

    Article  ADS  Google Scholar 

  19. S. Casolo, O. M. Lovvik, R. Martinazzo, and G. F. Tantardini, J. Chem. Phys. 130, 054704 (2009).

    Article  ADS  Google Scholar 

  20. R. Setton, Carbon 34, 69 (1996).

    Article  Google Scholar 

  21. A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard III, and W. M. Skiff, J. Am. Chem. Soc. 114, 10024 (1992).

    Article  Google Scholar 

  22. A. V. Savin and O. I. Savina, Phys. Solid State 61, 2241 (2019).

    Article  ADS  Google Scholar 

  23. J. Lahiri, T. S. Miller, A. J. Ross, L. Adamska, I. I. Oleynik, and M. Batzill, New J. Phys. 13, 025001 (2011).

    Article  ADS  Google Scholar 

  24. Y. Gamo, A. Nagashima, M. Wakabayashi, M. Terai, and C. Oshima, Surf. Sci. 374, 61 (1997).

    Article  ADS  Google Scholar 

  25. A. Dahal and M. Batzill, Nanoscale 6, 2548 (2014).

    Article  ADS  Google Scholar 

  26. A. V. Savin, R. A. Sakovich, and M. A. Mazo, Phys. Rev. B 97, 165436 (2018).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Scientific Foundation, project no. 16-13-10302. The computer resources were presented by the Interdepartmental Supercomputer Center of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Savin.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savin, A.V. Stationary States of Single-Side Hydrogenated Graphene Sheets Disposed on Planar Substrates. Phys. Solid State 62, 574–579 (2020). https://doi.org/10.1134/S1063783420030208

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420030208

Keywords:

Navigation