Skip to main content
Log in

Synchrotron, X-Ray, and Electron Microscopic Studies of Catalyst Systems Based on Multiwalled Carbon Nanotubes Modified by Copper Nanoparticles

  • GRAPHENES
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The results of the studies of a composite based on multiwalled carbon nanotubes (MWCNTs), onto the outer surface of which nanosized copper particles are deposited by the pyrolysis of copper formate, via electron microscopy, X-ray diffractometry, and ultrasoft X-ray spectroscopy, are discussed. It is found that, in an inert argon atmosphere, copper nanoparticles are deposited onto the surface of MWCNTs in the form of different-size nanoparticles consisting of a metallic copper nucleus and a cuprous oxide Cu2O shell. However, after being taken out into the atmosphere, a layer of copper oxide CuO is formed on the surface of the copper nanoparticles. It is shown that the good adhesion of the copper nanoparticles on the surface of the MWCNTs is provided by the formation of a chemical bond between the carbon atoms of the outer graphene layer of the nanotube and the oxygen atoms of cuprous oxide Cu2O that initially covers the metallic nucleus of the nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. C. N. R. Rao and A. K. Cheetham, J. Mater. Chem. 11, 2887 (2001).

    Article  Google Scholar 

  2. D. Eder, Chem. Rev. 110, 1348 (2010).

    Article  Google Scholar 

  3. A. V. Kadomtseva, A. V. Vorotyntsev, V. M. Vorotyntsev, A. N. Petukhov, A. M. Ob’’edkov, K. V. Kremlev, and B. S. Kaverin, Russ. J. Appl. Chem. 88, 595 (2015).

    Article  Google Scholar 

  4. V. N. Sivkov, S. V. Nekipelov, O. V. Petrova, A. M. Obiedkov, B. S. Kaverin, A. I. Kirillov, G. A. Domrachev, V. A. Egorov, S. A. usev, D. V. Vyalikh, and S. L. Mo-lodtsov, Fullerenes, Nanotubes, Carbon Nanostruct. 23, 17 (2015).

    Article  Google Scholar 

  5. V. N. Sivkov, A. M. Ob’’edkov, O. V. Petrova, S. V. Nekipelov, K. V. Kremlev, B. S. Kaverin, N. M. Semenov, and C. A. Gusev, Phys. Solid State 57, 197 (2015).

    Article  ADS  Google Scholar 

  6. O. V. Petrova, S. V. Nekipelov, A. E. Mingaleva, V. N. Sivkov, A. M. Obiedkov, B. S. Kaverin, K. V. Kremlev, S. Yu. Ketkov, S. A. Gusev, D. V. Vyalikh, and S. L. Molodtsov, J. Phys.: Conf. Ser. 741, 012038 (2016).

    Google Scholar 

  7. K. V. Kremlev, A. M. Ob’’edkov, S. Yu. Ketkov, B. S. Kaverin, N. M. Semenov, S. A. Gusev, D. A. Tatarskii, and P. A. Yunin, Tech. Phys. Lett. 42, 517 (2016).

    Article  ADS  Google Scholar 

  8. K. V. Kremlev, A. M. Obiedkov, S. Yu. Ketkov, B. S. Kaverin, N. M. Semenov, G. A. Domrachev, S. A. Gusev, D. A. Tatarskiy, and P. A. Yunin, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9, 694 (2015).

    Article  Google Scholar 

  9. K. V. Kremlev, A. M. Ob’’edkov, N. M. Semenov, B. S. Kaverin, S. Yu. Ketkov, S. A. Gusev, P. A. Yunin, A. I. Elkin, and A. V. Aborkin, Tech. Phys. Lett. 44, 865 (2018).

    Article  ADS  Google Scholar 

  10. B. S. Kaverin, A. M. Obiedkov, S. Yu. Ketkov, K. V. Kremlev, N. M. Semenov, S. A. Gusev, D. A. Tatarskiy, P. A. Yunin, I. V. Vilkov, and M. A. Faddeev, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 12, 682 (2018).

    Article  Google Scholar 

  11. Chemistry and Technology of Rare and Trace Elements, Ed. by K. A. Bol’shakov (Vysshaya Shkola, Moscow, 1976), Part 1 [in Russian].

  12. V. M. Vorotyntsev, A. V. Gusev, and G. G. Devyatykh, Vysokochist. Veshchestva 1, 5 (1988).

    Google Scholar 

  13. V. N. Sivkov, A. A. Lomov, A. L. Vasil’ev, S. V. Nekipelov, and O. V. Petrova, Semiconductors 47, 1051 (2013).

    Article  ADS  Google Scholar 

  14. A. I. Kirillov, A. M. Ob’’edkov, V. A. Egorov, G. A. Domrachev, B. S. Kaverin, N. M. Semenov, T. I. Lopatina, S. A. Gusev, and A. D. Mansfel’d, Nanotekhnika 1 (25), 72 (2011).

    Google Scholar 

  15. A. M. Ob’’edkov, B. S. Kaverin, V. A. Egorov, N. M. Semenov, S. Yu. Ketkov, G. A. Domrachev, K. V. Kremlev, S. A. Gusev, V. N. Perevezentsev, A. N. Moskvichev, A. A. Moskvichev, and A. S. Rodionov, Pis’ma Mater., No. 2, 152 (2012).

  16. S. A. Gorovikov, S. L. Molodtsov, and R. Follath, -Nucl. Instrum. Methods Phys. Res., Sect. A 441, 506 (1998).

    Google Scholar 

  17. B. L. Henke, E. M. Gullikson, and J. L. Devis, At. Data. Nucl. Data Tables 54, 181 (1993).

    Article  ADS  Google Scholar 

  18. K. Kummer, V. N. Sivkov, D. V. Vyalikh, V. V. Maslyuk, A. Bluher, S. V. Nekipelov, T. Bredow, I. Mertig, M. Mertig, and S. L. Molodtsov, Phys. Rev. B 80, 155433 (2009).

    Article  ADS  Google Scholar 

  19. J. Stohr, NEXAFS Spectroscopy (Springer, Berlin, 1992).

    Book  Google Scholar 

  20. U. Arp, K. Iemura, G. Kutluk, M. Meyer, T. Nagata, M. Sacchi, B. Sonntag, S. Yagi, and A. Yagishita, J. Phys. B 27, 3389 (1994).

    Article  ADS  Google Scholar 

  21. Handbook of X-ray Photoelectron Spectroscopy, Ed. by J. F. Moulder, J. Chastain, and R. C. King (Physical Electronics, Plying Cloud Drive Eden Prairie, MN, 1995).

    Google Scholar 

  22. O. Cheshnovsky, K. J. Taylor, J. Conceicao, and R. E. Smalley, Phys. Rev. Lett. 64, 1785 (1990).

    Article  ADS  Google Scholar 

  23. M. Grioni, J. B. Goedkoop, R. Schoorl, F. M. F. de Groot, J. C. Fuggle, F. Schäfers, E. E. Koch, G. Rossi, J.‑M. Esteva, and R. C. Karnatak, Phys. Rev. B 39, 1541 (1989).

    Article  ADS  Google Scholar 

  24. H. Ebert, J. Stöhr, S. S. P. Parkin, M. Samant, and A. Nilsson, Phys. Rev. B 53, 16067 (1996).

    Article  ADS  Google Scholar 

  25. M. Grioni, M. T. Czyžyk, F. M. F. de Groot, J. C. Fuggle, and B. E. Watts, Phys. Rev. B 39, 4886 (1989).

    Article  ADS  Google Scholar 

  26. M. Grioni, J. F. van Acker, M. T. Czyžyk, and J. C. Fuggle, Phys. Rev. B 45, 3309 (1992).

    Article  ADS  Google Scholar 

  27. H.-K. Jeong, H.-J. Noh, J.-Y. Kim, M. H. Jin, C. Y. Park, and Y. H. Lee, Europhys. Lett. 82, 67004 (2008).

    Article  ADS  Google Scholar 

  28. R. J. Madix, J. L. Solomon, and J. Stöhr, Surf. Sci. 197, L253 (1988).

    Article  ADS  Google Scholar 

  29. K. Benzerara, N. Menguy, P. López-García, T.‑H. Yoon, J. Kazmierczak, T. Tyliszczak, F. Guyot, and G. E. Brown, Proc. Natl. Acad. Sci. U. S. A. 103, 9440 (2006).

    Article  ADS  Google Scholar 

  30. X. Zhang, J. Zhou, H. Song, X. Chen, Yu. V. Fedoseeva, A. V. Okotrub, and L. G. Bulusheva, ACS Appl. Mater. Interfaces 6, 17236 (2014).

    Article  Google Scholar 

  31. S. N. Nesov, P. M. Korusenko, S. N. Povoroznyuk, V. V. Bolotov, E. V. Knyazev, and D. A. Smirnov, Nucl. Instrum. Methods Phys. Res., Sect. B 410, 222 (2017).

    Google Scholar 

  32. A. V. Generalov, M. M. Brzhezinskaya, A. S. Vinogradov, R. P Puttner, M. V. Chernysheva, A. V. Lukashin, and A. A. Eliseev, Phys. Solid State 53, 643 (2011).

    Article  ADS  Google Scholar 

  33. J. Dıaz, S. Anders, A. Cossy-Favre, M. Samant, and J. Stohr, J. Appl. Phys. 9, 8265 (2001).

    Google Scholar 

  34. J. G. Chen, Surf. Sci. Rep. 30, 1 (1997).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed with the use of the equipment of the center for collective use “Physics and Technology of Micro- and Nanostructures.”

Funding

This work was performed with the financial support from the bilateral program of the RGBL at BESSY II; grants from the Russian Foundation for Basic Research nos. 19-32-5062/19 mol_nr and 18-33-00776 supported by the Russian Foundation for Basic Research; Program of Fundamental Research of the Ural Branch of the Russian Academy of Sciences, project no. 18-10-2-23; and as part of a state task for the Federal State Budgetary Institution of Science Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, topic 45.8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Sivkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivkov, V.N., Ob’’edkov, A.M., Petrova, O.V. et al. Synchrotron, X-Ray, and Electron Microscopic Studies of Catalyst Systems Based on Multiwalled Carbon Nanotubes Modified by Copper Nanoparticles. Phys. Solid State 62, 214–222 (2020). https://doi.org/10.1134/S1063783420010308

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420010308

Keywords:

Navigation