Skip to main content
Log in

Magnetic States of the Zigzag Edge of a Graphene Nanoribbon

  • GRAPHENES
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Using a simple structural model and the multicenter Anderson Hamiltonian, Green’s functions are obtained for the atoms of the zigzag edge of an epitaxial graphene nanoribbon. The electronic structure of the free nanoribbon is discussed in detail. Specifically, expressions for the band spectrum and density of states are found and estimates of the occupation numbers and magnetic moments are given. For a nanoribbon strongly bonded to a metal substrate, the criteria for the appearance of magnetic moments are determined. As it is shown for both free and epitaxial nanoribbons, the probability of the appearance of magnetic moments and their magnitude for zigzag edge atoms that have two nearest neighbors is higher than for atoms with three nearest neighbors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. K. Slota, A. Keerthi, W. K. Myers, E. Tretyakov, M. Baumgarten, A. Ardavan, H. Sadeghi, C. J. Lambert, A. Narita, K. Müllen, and L. Bogani, Nature (London, U.K.) 557, 691 (2018).

    Article  ADS  Google Scholar 

  2. F. Luis and E. Coronado, Nature (London, U.K.) 557, 645 (2018).

    Article  ADS  Google Scholar 

  3. M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, J. Phys. Soc. Jpn. 65, 1920 (1996).

    Article  ADS  Google Scholar 

  4. T. L. Makarova, Semiconductors 38, 615 (2004).

    Article  ADS  Google Scholar 

  5. E. Kan, Z. Li, and J. Yang, Nano 3, 433 (2006).

    Article  Google Scholar 

  6. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science (Washington, DC, U. S.) 306, 666 (2004).

    Article  ADS  Google Scholar 

  7. Y.-W. Son, M. L. Cohen, and S. G. Louie, Nature (London, U.K.) 444, 347 (2006).

    Article  ADS  Google Scholar 

  8. V. Barone, O. Hod, and G. E. Scuseria, Nano Lett. 6, 2748 (2006).

    Article  ADS  Google Scholar 

  9. O. V. Yazyev, Rep. Prog. Phys. 73, 056501 (2010).

    Article  ADS  Google Scholar 

  10. V. Meunier, A. G. Souza Filho, E. B. Barros, and M. S. Dresselhaus, Rev. Mod. Phys. 88, 025005 (2016).

    Article  ADS  Google Scholar 

  11. D. Pesin and A. H. MacDonald, Nat. Mater. 11, 409 (2012).

    Article  ADS  Google Scholar 

  12. P. Recher and B. Trauzettel, Nanotechnology 21, 302001 (2010).

    Article  Google Scholar 

  13. S. Yu. Davydov, Semiconductors 53 (2019, in press).

  14. P. W. Anderson, Phys. Rev. 124, 41 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  15. Ch. Kittel, Quantum Theory of Solids (Wiley, New York, 1963; Nauka, Moscow, 1967), Chap. 18.

  16. S. Alexander and P. W. Anderson, Phys. Rev. A 133, 1594 (1964).

    Article  ADS  Google Scholar 

  17. J. M. Ziman, Principles of the Theory of Solids (Cambridge Univ. Press, Cambridge, 1964).

    MATH  Google Scholar 

  18. T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism (Springer, Berlin, 1985; Mir, Moscow, 1988).

  19. S. Yu. Davydov, Sov. Phys. Solid State 21, 1314 (1979).

    Google Scholar 

  20. S. Yu. Davydov, Adsorption Theory: Model Hamiltonian Method (SPbGETU LETI, St. Petersburg, 2013) [in Russian]. twirpx.com/file/1596114/.

  21. F. D. M. Haldane, and P. W. Anderson, Phys. Rev. B 13, 2553 (1976).

    Article  ADS  Google Scholar 

  22. S. Yu. Davydov, Phys. Solid State 54, 2329 (2012).

    Article  ADS  Google Scholar 

  23. S. Yu. Davydov, Phys. Solid State 58, 1222 (2016).

    Article  ADS  Google Scholar 

  24. T. O. Wehling, E. Sasioglu, C. Friedrich, A. I. Lichtenstein, M. I. Katsnelson, and S. Blügel, Phys. Rev. Lett. 106, 236805 (2011).

    Article  ADS  Google Scholar 

  25. S. Yu. Davydov, Phys. Solid State 60, 812 (2018).

    Article  ADS  Google Scholar 

  26. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Series and Products (Academic, New York, 2000; Fizmatgiz, Moscow, 1962).

  27. P. F. Bird and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists (Springer, Berlin, 1971).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Davydov.

Ethics declarations

The author states that he has no conflicts of interests.

Additional information

Translated by O. Kadkin

APPENDIX

APPENDIX

To find the occupation numbers, it is necessary to calculate the following integrals:

$${{J}_{ - }} = \int\limits_{{{\omega }_{1}}(\pi /2a)}^{{{\omega }_{1}}(0)} {\frac{{\omega d\omega }}{{{{R}_{ - }}(\omega )}}} ,\quad {{S}_{ - }} = \int\limits_{{{\omega }_{1}}(\pi /2a)}^{{{\omega }_{1}}(0)} {\frac{{d\omega }}{{{{R}_{ - }}(\omega )}},} $$
$${{P}_{ - }} = \int\limits_{{{\omega }_{1}}(\pi /2a)}^{{{\omega }_{1}}(0)} {\frac{{d\omega }}{{\omega {{R}_{ - }}(\omega )}};} $$
$${{J}_{ + }} = \int\limits_{{{\omega }_{2}}(\pi /2)}^{{{\omega }_{2}}(0)} {\frac{{\omega d\omega }}{{{{R}_{ + }}(\omega )}}} ,\quad {{S}_{ + }} = \int\limits_{{{\omega }_{2}}(\pi /2)}^{{{\omega }_{2}}(0)} {\frac{{d\omega }}{{{{R}_{ + }}(\omega )}},} $$
$${{P}_{ + }} = \int\limits_{{{\omega }_{2}}(\pi /2)}^{{{\omega }_{2}}(0)} {\frac{{\omega d\omega }}{{\omega {{R}_{ + }}(\omega )}},} $$

where ω1(0) = t(\(\sqrt {17} \) + 1)/2, ω2(0) = t(\(\sqrt {17} \) – 1)/2, ω1(π/2a) = t, and ω2(π/2a) = Δ. Using the handbook [26] (formulas 3.147–3.149), we obtain the following expressions for the J, S, and P integrals:

$${{J}_{ - }} = 2[(1 + \eta )\Pi ( - \eta ,\eta ) - \eta K(\eta )],$$
$${{S}_{ - }} = (2{\text{/}}{{\omega }_{1}}(0))K(\eta ),$$
$${{P}_{ - }} = (1{\text{/}}2{{t}^{2}})[(1 + \eta )\Pi (1,\eta ) - K(\eta )],$$
$${{J}_{ + }} = 2[(1 + \eta )\Pi (\varphi , - \eta ,\eta ) - F(\varphi ,\eta )],$$
$${{S}_{ + }} = (2{\text{/}}{{\omega }_{1}}(0))F(\varphi ,\eta ),$$
$${{P}_{ + }} = (1{\text{/}}2{{t}^{2}})[(1 + \eta )\Pi (\varphi ,1,\eta ) - \eta F(\varphi ,\eta )],$$

where K(η) and Π(n, η) are the complete elliptic integrals of the first and third kind [26, 27], F(φ, η) and Π(φ, n, η) are the incomplete elliptic integrals of the first and third kind [26, 27],

$$\eta = (\sqrt {17} - 1){\text{/}}(\sqrt {17} + 1),$$

and

$$\varphi = \arcsin (\sqrt {[1 - \Delta {\text{/}}{{\omega }_{2}}(0)]{\text{/}}[1 + \Delta {\text{/}}{{\omega }_{1}}(0)]} ).$$

For what follows, we need to expand the J+, S+, and P+ integrals over φ = π/2 – β, where β ≈ \(\sqrt {\Delta {\text{/}}t} {\text{/}}2\)\( \ll \) 1. Based on the definition of the F(φ, η) and Π(φ, n, η) integrals and assuming

$$F(\varphi ,\eta ) = K(\eta ) - \kappa (\beta ,\eta ),$$
$$\kappa (\beta ,\eta ) = \int\limits_{1 - {{\beta }^{2}}/2}^1 {\frac{{dx}}{{\sqrt {(1 - {{x}^{2}})(1 - {{\eta }^{2}}{{x}^{2}})} }},} $$
$$\Pi (\varphi ,n,\eta ) = \Pi (n,\eta ) - \pi (\beta ,n,\eta ),$$
$$\pi (\beta ,n,\eta ) = \int\limits_{1 - {{\beta }^{2}}/2}^1 {\frac{{dx}}{{(1 + n{{x}^{2}})\sqrt {(1 - {{x}^{2}})(1 - {{\eta }^{2}}{{x}^{2}})} }},} $$

we get

$$\kappa (\beta ,\eta ) \approx \sqrt {\Delta {\text{/}}t} {\text{/}}4\sqrt {1 - {{\eta }^{2}}} ,$$
$$\pi (\beta ,n,\eta ) \approx \sqrt {\Delta {\text{/}}t} {\text{/}}4(1 + n)\sqrt {1 - {{\eta }^{2}}} .$$

Thus, preserving only terms with ~\(\sqrt {\Delta {\text{/}}t} \) and taking into account relation Π(–η, η) = [π + 2(1 + η)K(η)]/4(1 + η) [27], we come to formulas (18).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydov, S.Y. Magnetic States of the Zigzag Edge of a Graphene Nanoribbon. Phys. Solid State 62, 223–229 (2020). https://doi.org/10.1134/S1063783420010084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420010084

Keywords:

Navigation