Skip to main content
Log in

Long-Lived Photocatalysis Centers Created in ZnO via Resonant Exciton Excitation

  • OPTICAL PROPERTIES
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

ZnO together with TiO2 is a main photocatalyst for various redox reactions to convert light energy into a chemical one and to purify the environment. Intrinsic surface defects in ZnO—the vacancies in anionic and cationic sublattices (F-type and V-type centers)—allow creation of long-lived (up to 103 s) photocatalysis centers and, therefore, tenfold increase in quantum yield of reactions. Slow surface states—the photocatalysis centers—appear via diffusion of electrons and holes generated during the interband transitions in the bulk of a photoactivated sample. The transfer efficiency, however, decreases sharply because of recombination of charge carriers and losses during overcoming the surface Schottky barrier. Neutral energy carriers—excitons—were used in this work to decrease these losses during the energy transfer to a surface. High exciton binding energy in ZnO (60 meV) allows it to move at room temperature without decay. The exciton energy loss for radiation is effectively decreased in our experiments via formation of a 2D surface structure. The results confirm high efficiency of exciton channel to form surface long-lived photocatalysis F-centers and V‑centers during the photoadsorption and photodesorption processes of oxygen, which simulate full cycle of a redox photocatalytic reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, and M. A. Re-shchikov, J. Appl. Phys. 98, 041301 (2005).

    Article  ADS  Google Scholar 

  2. J. R. Sanchez-Valencia, M. Alcaire, P. Romero-Gómez, A. R. Gonzalez-Elipe, and A. Barranco, J. Phys. Chem. C 118, 9852 (2014).

    Article  Google Scholar 

  3. C. Jagadish and S. Pearton, Zinc Oxide: Bulk, Thin Films and Nanostructures (Elsevier, Amsterdam, 2006).

    Google Scholar 

  4. C. Klingshirn, J. Fallert, H. Zhou, J. Sartor, C. Thiele, F. Maier-Flaig, D. Schneider, and H. Kalt, Phys. Status Solidi B 247, 1424 (2010).

    Article  ADS  Google Scholar 

  5. N. H. Nickel and E. Terukov, Zinc Oxide—A Material for Micro- and Optoelectronic Applications (Springer, Berlin, 2005).

    Book  Google Scholar 

  6. V. V. Titov, A. A. Lisachenko, I. Kh. Akopyan, M. E. Labzowskaya, and B. V. Novikov, J. Lumin. 195, 153 (2018).

    Article  Google Scholar 

  7. I. V. Blashkov, L. L. Basov, and A. A. Lisachenko, J. Phys. Chem. C 121, 28364 (2017).

    Article  Google Scholar 

  8. A. A. Lisachenko, J. Photochem. Photobiology A 354, 47 (2018).

    Article  Google Scholar 

  9. I. Kh. Akopyan, M. E. Labzovskaya, A. A. Lisachenko, B. V. Novikov, A. Yu. Serov, V. V. Titov, N. G. Filosofov, Phys. Solid State 58, No. 9, 1767 (2016).

  10. A. A. Lisachenko, Phys. B: Condens. Matter 404, 4842 (2009).

    Article  ADS  Google Scholar 

  11. A. A. Lisachenko, Phys. Low-Dim. Struct., Nos. 7–8, 1 (2000).

    Google Scholar 

  12. V. E. Drozd, V. V. Titov, I. A. Kasatkin, L. L. Basov, A. A. Lisachenko, O. L. Stroyuk, and S. Y. Kuchmiy, Thin Solid Films 573, 128 (2014).

    Article  ADS  Google Scholar 

  13. A. A. Lisachenko, J. Photochem. Photobiol. A 196, 127 (2008).

    Article  Google Scholar 

  14. Y. Wang, B. Yang, N. Can, and P. D. Tounsend, J. Appl. Phys. 109, 053508 (2011).

    Article  ADS  Google Scholar 

  15. P. A. Rodnyi, K. A. Chernenko, A. Zolotarjovs, L. Grigorjeva, E. I. Gorokhova, and I. D. Venevtsev, Phys. Solid State 58, 2055 (2016).

    Article  ADS  Google Scholar 

  16. U. Pal, R. Melendrez, V. Chernov, and M. Barboza-Flores, Appl. Phys. Lett. 89, 183118 (2006).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the staff of St. Petersburg State University Resource Centers: “Nanocomposites,” “Physical Methods of Surface Research,” “X-ray Diffraction Studies,” and “Nanophotonics.”

Funding

This work was financially supported by the Russian Foundation for Basic Research (project no. 18-03-00754).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Lisachenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Tulyabaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Titov, V.V., Lisachenko, A.A., Akopyan, I.K. et al. Long-Lived Photocatalysis Centers Created in ZnO via Resonant Exciton Excitation. Phys. Solid State 61, 2134–2138 (2019). https://doi.org/10.1134/S1063783419110398

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419110398

Keywords:

Navigation