Skip to main content
Log in

On the Mechanism of Absorption and Restoration of Radiation Transmission in the Channel of Small-Scale Self-Focusing of a Short Laser Pulse in Neodymium Glass

  • OPTICAL PROPERTIES
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

When diagnosing a small-scale self-focusing (SSSF) channel of a 0.5-ns laser pulse with an intensity of 3–5 GW/cm2 in neodymium glasses, an absorption jump was detected (with a front of ≈0.5 ns) at wavelengths of 1.06 and 0.66 μm in addition to filament-like damage typical of SSSF, spectral broadening, and laser radiation scattering. The absorption coefficient reached 0.15 cm–1, and transmission in the medium was restored during 15–35 ns for phosphate glass and 5–10 ns for silicate glass. The physical bases of this effect of the appearance and relaxation of absorption in glasses have not been previously presented. An analysis of the experimental data showed that the absorption jump is due to the fast population of the 4I11/2 level of Nd3+ ions in glasses when nonlinear processes occur in the SSSF channel such as stimulated Raman scattering and broadening of the laser pulse spectrum. The relaxation time of the population at the 4I11/2 level and the restoration of transmission in glasses after the termination of the laser pulse are determined by the characteristic sizes of the Nd3+ ions excitation regions arising in the samples upon interference of the laser and scattered radiation, as well as the thermophysical characteristics of the glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. N. E. Bykovskii, N. B. Baranova, B. Ya. Zel’dovich, and Yu. V. Senatskii, Kvant. Elektron. 1, 2435 (1974).

    ADS  Google Scholar 

  2. J. A. Fleck, Jr., J. R. Morris, and E. S. Bliss, IEEE J. Quantum Electron. 14, 353 (1978).

    Article  ADS  Google Scholar 

  3. N. B. Baranova, N. E. Bykovsky, S. V. Tchekalin, and Yu. V. Senatsky, J. Sov. Laser Res. 1, 53 (1980).

    Article  Google Scholar 

  4. V. V. Ivanov, Yu. V. Senatsky, and G. V. Sklizkov, Phys. Lett. A 124, 381 (1987).

    Article  ADS  Google Scholar 

  5. V. V. Ivanov, Yu. V. Senatskii, and G. V. Sklizkov, JETP Lett. 45, 522 (1987).

    ADS  Google Scholar 

  6. N. E. Bykovskii, V. V. Ivanov, Yu. V. Senatskii, and G. V. Sklizkov, Sov. J. Quantum Electron. 18, 783 (1988).

    Article  Google Scholar 

  7. V. V. Ivanov, Yu. V. Senatskii, and G. V. Sklizkov, JETP Lett. 47, 95 (1988).

    ADS  Google Scholar 

  8. A. A. Mak, L. N. Soms, V. A. Fromzel’, and V. E. Yashin, Neodymium Glass Lasers (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  9. S. G. Lukishova, Yu. V. Senatsky, N. E. Bykovsky, and A. S. Scheulin, Top. Appl. Phys. 114, 191 (2009).

    Article  Google Scholar 

  10. S. V. Chekalin and V. P. Kandidov, Phys. Usp. 56, 123 (2013).

    Article  ADS  Google Scholar 

  11. R. A. Fisher and L. T. James, Opt. Commun. 13, 402 (1975).

    Article  ADS  Google Scholar 

  12. L. E. Ageeva, N. B. Brachkovskaya, S. G. Lunter, A. K. Przhevuskii, and M. N. Tolstoi, Sov. J. Quantum Electron. 6, 1107 (1977).

    Google Scholar 

  13. A. A. Mak, D. S. Prilezhaev, V. A. Serebryakov, and A. D. Starikov, Opt. Spektrosk. 33, 689 (1972).

    Google Scholar 

  14. Yu. P. Rudnitskii, R. V. Smirnov, and V. M. Chernyak, Kvant. Elektron. 3, 2035 (1976).

    Google Scholar 

  15. W. E. Martin and D. Milam, IEEE J. Quantum Electron. 18, 1155 (1982).

    Article  ADS  Google Scholar 

  16. V. H. Alekseev, D. I. Dmitriev, A. N. Zhilin, and V. N. Chernov, Sov. J. Quantum Electron. 15, 95 (1985).

    Article  ADS  Google Scholar 

  17. V. V. Ivanov, Cand. Sci. Dissertation (Phys. Inst. Acad. Sci. USSR, Moscow, 1988).

  18. C. Bibeau, S. Payne, and H. Powell, J. Opt. Soc. Am. B 12, 1981 (1995).

    Article  ADS  Google Scholar 

  19. R. R. Alfano and S. L. Shapiro, Phys. Rev. Lett. 24, 592 (1970).

    Article  ADS  Google Scholar 

  20. N. E. Bykovsky, E. V. Zavedeev, V. G. Ralchenko, and Yu. V. Senatsky, Laser Phys. Lett. 12, 056102 (2015).

    Article  ADS  Google Scholar 

  21. N. E. Bykovskii, E. V. Zavedeev, and Yu. V. Senatskii, Phys. Solid State 57, 798 (2015).

    Article  ADS  Google Scholar 

  22. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, New York, 1987).

  23. L. I. Avakyants, I. M. Buzhinskii, E. I. Koryagina, and V. F. Surkova, Sov. J. Quantum Electron. 8, 423 (1978).

    Article  ADS  Google Scholar 

  24. D. Messias, C. Jacinto, M. Bell, and T. Catunda, IEEE J. Quantum Electron. 43, 751 (2007).

    Article  ADS  Google Scholar 

  25. S. Balachandar, N. C. Shivaprakash, and L. Kameswara Rao, Pramana J. Phys. 88, 41 (2017).

    Google Scholar 

  26. L. Kubicar, V. Vretenar, and U. Hammerschmidt, Int. J. Thermophys. 26, 507 (2005).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-02-00285.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Senatskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bykovskii, N.E., Senatskii, Y.V. On the Mechanism of Absorption and Restoration of Radiation Transmission in the Channel of Small-Scale Self-Focusing of a Short Laser Pulse in Neodymium Glass. Phys. Solid State 61, 2110–2116 (2019). https://doi.org/10.1134/S1063783419110106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419110106

Keywords:

Navigation